50 research outputs found

    Mitigating the Effects of an Economic Downturn on Charitable Contributions: Facing the Problem and Contemplating Solutions

    Get PDF

    Mitigating the Effects of an Economic Downturn on Charitable Contributions: Facing the Problem and Contemplating Solutions

    Get PDF
    Charitable giving has been a foundation of American society almost since the nation began but the issue of how such giving should be treated for tax purposes has been the subject of frequent debate Scholars have proposed various theories explaining why the positive effects of this deduction on both donors and donees outweigh the negative impact on government coffers of this tax expenditure although many still criticize certain features of the deduction in its current form However one area of this research that has previously been neglected is how the charitable sector is affected by changes to the economy at large Contributions to charitable organizations tend to decline during an economic downturn and such a decline may be catastrophic to the charitable sector In particular an economic downturn can affect charitable organizations in three different ways First some organizations may experience an increase in donations but simultaneously experience an increase in demand for their services Other organizations may experience an increase in demand for their services without experiencing an accompanying increase in donations Finally some organizations may experience such a steep decline in donations that their very survival is put in jeopardy regardless of whether the demand for their services increases In order to meet the recessionary needs of all three types of organizations the government should 1 convert the current charitable deduction to a refundable credit that is available to all taxpayers 2 provide a tax credit to employers who second their employers to work for charitable organizations and 3 provide direct funding to those charities that can demonstrate dire financial nee

    Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists.

    Get PDF
    UnlabelledAlthough adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP-Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics.SignificanceAlthough stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell-based therapy for treating bone defects that can effectively complement or replace current osteoinductive therapeutics

    A Case of Non-Hodgkin's Lymphoma in Patient with Coombs' Negative Hemolytic Anemia and Idiopathic Thrombocytopenic Purpura

    Get PDF
    Coombs' negative autoimmune hemolytic anemia (AIHA) is a rare disease which shares similar clinical and hematological features with Coombs' positive AIHA, but its exact frequency remains unknown. There have been few reports of idiopathic thrombocytopenic purpura (ITP) and Coombs' negative AIHA associated with other lymphoproliferative disorders (LPDs). Since there is a well known association between LPDs and autoimmune phenomena, it is important to investigate the possibility of an underlying malignancy. We report a case of ITP and Coombs' negative AIHA associated with diffuse large B-cell lymphoma

    Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer's disease models

    Get PDF
    Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aβ oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aβ oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aβ-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD

    PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons

    Get PDF
    Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-β1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-β1 followed by COL6A1. Knockdown of TGF-β1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-β1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.</p

    Atrial fibrillation: Apixaban cost-effective in the long term?

    No full text
    corecore