273 research outputs found

    Fast Neutron And Gamma-ray Detectors For The Csiro Air Cargo Scanner

    Get PDF
    oS(FNDA2006)074 © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence

    Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    Full text link
    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.Comment: Proceedings of FNDA 201

    Freshwater umbrella - the effects of nitrogen deposition & climate change on freshwaters in the UK

    Get PDF
    In upland areas of the UK located away from direct human disturbance through agriculture, industrial activities and urban pollution, atmospheric pollution poses one of the major threats to the chemical and biological quality of lakes and streams. One of the most important groups of pollutants is nitrogen (N) compounds, including oxidised forms of N called NOx, generated mainly by fossil fuel combustion especially in motor vehicles, and reduced forms of N (ammonia gas or dissolved ammonium compounds) generated mainly from agricultural activities and livestock. These nitrogen compounds may dissolve in rain or soilwater to form acids, or may be taken up as nutrients by plants and soil microbes in upland catchments, and then subsequently released in acid form associated with nitrate leaching at a later date. It is well established that nitrate leaching contributes to acidification of upland waters, with damage to aquatic ecosystems including plants, invertebrates and fish. However it has recently been suggested that nitrate leaching may also be associated with nutrient enrichment of upland waters that contain biological communities adapted to very low nutrient levels

    Ammonite stratigraphy of a Toarcian (Lower Jurassic) section on Nagy-Pisznice Hill (Gerecse Mts, Hungary)

    Get PDF
    Abstract In the Jurassic rocks exposed in a small abandoned quarry on the northwestern edge of Nagy-Pisznice Hill in the Gerecse Mts, fairly well preserved parts of a crocodile skeleton was found in 1996. The bed which yielded the skeletal remains is the uppermost layer of the Kisgerecse Marl Formation exposed here and was determined as belonging to the Upper Toarcian Grammoceras thouarsense Zone. The beds of the sequence above and below were carefully sampled in the late 1990s, and the encountered ammonites were evaluated biostratigraphically. As a result, the Lower Toarcian Harpoceras serpentinum Zone, the Middle Toarcian Hildoceras bifrons and Merlaites gradatus Zones, and the Upper Toarcian Grammoceras thouarsense and Geczyceras speciosum Zones were identified. Within most of these zones the subzones and even the faunal horizons were successfully recognized. The lowermost beds above the underlying Pliensbachian red limestone did not yield any fossils; thus the lowermost Toarcian Dactylioceras tenuicostatum Zone could not be documented. The highest Toarcian ammonite zones also remained unidentified, because the beds of the Tölgyhát Limestone above were not sampled all the way up. This paper presents the lithostratigraphic and biostratigraphic details of the sequence, and the paleontological descriptions of the most important ammonites

    Lymnaea schirazensis, an Overlooked Snail Distorting Fascioliasis Data: Genotype, Phenotype, Ecology, Worldwide Spread, Susceptibility, Applicability

    Get PDF
    BACKGROUND: Lymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease transmission heterogeneity. METHODOLOGY/PRINCIPAL FINDINGS: A ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela, Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector species (n = 8572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never lead to cercarial production (n = 338 experimentally infected). CONCLUSIONS/SIGNIFICANCE: This species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be considered in research. Genetic data on livestock, archeology and history along the 10,000-year post-domestication period explain its wide spread from the Neolithic Fertile Crescent. It is an efficient biomarker for the follow-up of livestock movements, a crucial aspect in fascioliasis emergence. It offers an outstanding laboratory model for genetic studies on susceptibility/resistance in F. hepatica/lymnaeid interaction, a field of applied research with disease control perspectives

    Characterization techniques for studying the properties of nanocarriers for systemic delivery

    Get PDF
    Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed
    • …
    corecore