14 research outputs found
The distribution of melanin-concentrating hormone in the lamprey brain
In addition to its novel, colour-regulating hormonal role in teleosts, the melanin-concentrating hormone (MCH) serves as a neuromodulatory peptide in all vertebrate brains. In gnathostome vertebrates, it is produced in several neuronal cell groups in the hypothalamus. The present work examines the organisation of the MCH system in the brain of lampreys, which separated from gnathostome vertebrates at an early stage in evolution. In all three lamprey genera examined - Petromyzon, Lampetra, and Geotria spp. - MCH perikarya were found in one major anatomical site, the periventricular dorsal hypothalamic nucleus of the posterior hypothalamus. Axons from these cell bodies projected medially into the ventricular cavity, and laterally to the neuropile of the lateral hypothalamus. From here, they extended anteriorly and posteriorly to the fore- and hindbrain. Other fibres extended dorsomedially to the habenular nucleus. In Lampetra, but not in Petromyzon, MCH fibres were seen in the pituitary neurohypophysis, most prominantly above the proximal pars distalis. The hypothalamic region in which the MCH perikarya are found forms part of the paraventricular organ (PVO), which is rich in monoamines and other neuropeptides. The association of MCH neurones with the PVO, which occurs also in many other nonmammalian vertebrates, may reflect the primary location of the MCH system. These MCH neurones were present in ammocoetes, postmetamorphic juveniles, and adults. They were more heavily granulated in adults than in young lampreys but showed no marked change in secretory appearance associated with metamorphosis or experimental osmotic challenge to indicate a role in feeding or osmoregulation. In sexually maturing Lampetra fluviatilis, however, a second group of small MCH neurones became detectable in the telencephalon, suggesting a potential role in reproduction and/or behaviour
Concentrações de hormônio na carcaça de tilápias-do-nilo e maturação precoce após reversão sexual Hormone concentration in carcass of Nile tilapia submitted to early maturation after sexual reversion
Um total de 1.500 larvas de tilápia-do-nilo foi distribuído em 15 aquários de 20 L (100 larvas cada um) para comparação de dois métodos de masculinização: via oral, com dieta com hormônio (60 mg do 17 α-metiltestosterona.kg-1); e via banho de imersão (6 mg do 17 α-metiltestosterona.L-1), cada um com cinco repetições. As larvas e os juvenis foram amostrados no dia 1 (início do experimento) e aos 30 (final do período de alimentação com hormônio), 40, 45, 60 e 90 dias. Uma amostra de 0,5 g de peixe foi coletada em cada repetição para análise da testosterona corporal. Os peixes alimentados com a dieta com hormônio receberam ração experimental por 30 dias e ração comercial até o final do experimento, e banho de imersão receberam ração comercial e foram submetidos a banhos de imersão (6 mg da 17 α-metiltestosterona.L-1), de 36 horas, nos dias 6 e 10 após início do experimento. Nos peixes que receberam a ração sem hormônio (controle), os valores de testosterona corporal se mantiveram praticamente estáveis ao longo do experimento, aumentando moderadamente a partir de 60 dias. As concentrações de testosterona corporal nos peixes que receberam a dieta com hormônio ou o banho de imersão foram mais altas aos 30 dias. Nos peixes submetidos ao banho de imersão, os valores reduziram aos 40 dias e aumentaram novamente até os 60 dias de observação, enquanto naqueles submetidos à dieta com hormônio, as concentrações de testosterona aumentaram gradativamente até 60 dias. A utilização de 17 α-metiltestosterona por via oral ou banho de imersão das larvas estimula a maturação sexual dos peixes a partir dos 45 dias, especialmente naqueles alimentados com ração contendo hormônio. As concentrações desse hormônio na carcaça são inferiores ao preconizado pelo Codex Alimentarius do Brasil como seguras para consumo humano.<br>A total of 1,500 larvae of Nile tilapia was distributed in 15 20-L aquaria (100 larvae in each one) to compare two methods of masculinization: via oral application, using a diet with hormone (60 mg 17α-methyltestosterone.kg-1); and through immersion bath (6 mg 17α-metyltestosterone.L-1), each one with five replicates. Larvae and juvenile were sampled on day 1 (beginning of the experiment) and on days 30 (end of hormone feeding period), 40, 45, 60 and 90. One sample with 0.5 g of fish was collected from each replication for analysis of body testosterone. Fish fed diet with hormone were given experimental ration for 30 days and commercial ration until the end of the experiment, and fish in immersion bath received commercial ration and they were submitted to immersion bath (6 mg 17 α-metyltestosterone.L-1) for 36 hours on days 6 and 10 after the beginning of the experiment. For fish given ration without hormone (control), values of body testosterone were almost totally steady over the experiment, moderately increasing from day 60. Concentrations of body testosterone in fish fed diet with hormone or immersion bath were the highest on day 30. For fish submitted to immersion bath, the values were reduced on day 40 and they increased again until 60 days of observation, while for those submitted to diet with hormone, concentrations of testosterone gradually increased until 60 days. The use of 17 α-methyltestosterone through oral administration or immersion bath of larvae promotes sexual maturation of fish from day 45, especially on those fed diet with hormone. Concentrations of hormone in the carcass are lower than the recommended by Codex Alimentarius from Brazil as safe for human consumption