53 research outputs found

    Central Mandibular Reconstruction by Semiopen Wedge Osteotomy Double-barrel Fibula Flap for a Slim Aesthetic Appearance

    Get PDF
    Mandibular reconstruction involving the central segment after malignant tumor resection requires the achievement of both functional and aesthetic quality. Three-dimensional reproduction based on the concept of a double arc composed of a marginal arc and an occlusal arc is important. Most reports of fibula flaps applied three-segmented closed wedge fibula osteotomy (bilateral and central segments); however, the aesthetic outcome sometimes became too stout for female patients because of the large central segment. We performed four-segmented fibula osteotomy for a 78-year-old woman using a semiopen wedge technique characterized by a half-open wedge and half-closed wedge. This procedure obtained a slim mandibular contour and made double-barrel reconstruction easier to apply. We used titanium plates that were prebent according to the shape of a three-dimensional model constructed from CT data. Small bone cortex fragments made from a surplus fibula segment were inserted in a half-opened area. The build-up preparation for central mandibular reconstruction was all performed at the lower leg area before cutting the peroneal pedicle. This prefabricated double-barrel fibula free flap was transferred to the mandibular defect with arterial and venous anastomosis to the right superior thyroid artery, right external jugular vein, and right common facial vein. Although the patient was nearly 80 years of age, the bone segments, including free cortex tips, were fused with smooth remodeling. Semiopen wedge osteotomy can be a key to reproducing an aesthetically slim feminine chin with a functional height of mandibular bone maintained for stability of the dental prosthesis

    A new cancer diagnostic system based on a CDK profiling technology

    Get PDF
    AbstractA series of molecular pathological investigations of the molecules that stimulate the cyclin dependent kinases (CDK1, 2, 4, and 6) have led to enormous accumulation of knowledge of the clinical significance of these molecules for cancer diagnosis. However, the molecules have yet to be applied to clinical cancer diagnosis, as there is no available technology for application of the knowledge in a clinical setting. We hypothesized that the direct measurement of CDK activities and expressions (CDK profiling) might produce clinically relevant values for the diagnosis. This study investigated the clinical relevance of CDK profiling in gastrointestinal carcinoma tissues by using originally developed expression and activity analysis methods. We have established novel methods and an apparatus for analyzing the expression and activities of the CDK molecules in lysate of tumor tissue in a clinical setting, and examined 30 surgically dissected gastrointestinal carcinomas and corresponding normal mucosal specimens. We demonstrate here that remarkably elevated CDK2 activity is evident in more than 70% of carcinoma tissues. Moreover, a G1-CDK activity profiling accurately mirrored the differences in proliferation between tumor and normal colonic tissues. Our results suggest that CDK profiling is a potent molecular–clinical approach to complement the conventional pathological diagnosis, and to further assist in the individualized medications

    Direct Conversion of Human Fibroblasts into Adipocytes Using a Novel Small Molecular Compound: Implications for Regenerative Therapy for Adipose Tissue Defects

    No full text
    There is a need in plastic surgery to prepare autologous adipocytes that can be transplanted in patients to reconstruct soft tissue defects caused by tumor resection, including breast cancer, and by trauma and other diseases. Direct conversion of somatic cells into adipocytes may allow sufficient functional adipocytes to be obtained for use in regeneration therapy. Chemical libraries of 10,800 molecules were screened for the ability to induce lipid accumulation in human dermal fibroblasts (HDFs) in culture. Chemical compound-mediated directly converted adipocytes (CCCAs) were characterized by lipid staining, immunostaining, and qRT-PCR, and were also tested for adipokine secretion and glucose uptake. CCCAs were also implanted into mice to examine their distribution in vivo. STK287794 was identified as a small molecule that induced the accumulation of lipid droplets in HDFs. CCCAs expressed adipocyte-related genes, secreted adiponectin and leptin, and abundantly incorporated glucose. After implantation in mice, CCCAs resided in granulation tissue and remained adipose-like. HDFs were successfully converted into adipocytes by adding a single chemical compound, STK287794. C/EBPα and PPARγ were upregulated in STK287794-treated cells, which strongly suggests involvement of these adipocyte-related transcription factors in the chemical direct conversion. Our method may be useful for the preparation of autogenous adipocytes for transplantation therapy for soft tissue defects and fat tissue atrophy

    Smenospongine, a Sesquiterpene Aminoquinone from a Marine Sponge, Induces G1 Arrest or Apoptosis in Different Leukemia

    No full text
    Abstract: Smenospongine, a sesquiterpene aminoquinone isolated from the marine sponge Dactylospongia elegans, was previously reported by us to induce erythroid differentiation and G1 phase arrest of K562 chronic myelogenous leukemia cells. In this study, we investigated the effect of smenospongine on the cell cycles of other leukemia cells, including HL60 human acute promyelocytic leukemia cells and U937 human histiocytic lymphoma cells by flow cytometric analysis. Smenospongine induced apoptosis dosedependently in HL60 and U937 cells. The smenospongine treatment increased expression of p21 and inhibited phosphorylation of Rb in K562 cells, suggesting the p21-Rb pathway play an important role in G1 arrest in K562 cells. However, the p21 promoter was not activated by the smenospongine treatment based on a luciferase assay using the transfected K562 cells. Smenospongine might induce p21 expression via another mechanism than transactivation of p21 promoter

    Smenospongine, a Sesquiterpene Aminoquinone from a Marine Sponge, Induces G1 Arrest or Apoptosis in Different Leukemia Cells

    No full text
    Smenospongine, a sesquiterpene aminoquinone isolated from the marine sponge Dactylospongia elegans, was previously reported by us to induce erythroid differentiation and G1 phase arrest of K562 chronic myelogenous leukemia cells. In this study, we investigated the effect of smenospongine on the cell cycles of other leukemia cells, including HL60 human acute promyelocytic leukemia cells and U937 human histiocytic lymphoma cells by flow cytometric analysis. Smenospongine induced apoptosis dosedependently in HL60 and U937 cells. The smenospongine treatment increased expression of p21 and inhibited phosphorylation of Rb in K562 cells, suggesting the p21-Rb pathway play an important role in G1 arrest in K562 cells. However, the p21 promoter was not activated by the smenospongine treatment based on a luciferase assay using the transfected K562 cells. Smenospongine might induce p21 expression via another mechanism than transactivation of p21 promoter

    Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Get PDF
    Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs). This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2) and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta). NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives

    Metformin Causes G1-Phase Arrest via Down-Regulation of MiR-221 and Enhances TRAIL Sensitivity through DR5 Up-Regulation in Pancreatic Cancer Cells

    No full text
    <div><p>Although many chemotherapeutic strategies against cancer have been developed, pancreatic cancer is one of the most aggressive and intractable types of malignancies. Therefore, new strategies and anti-cancer agents are necessary to treat this disease. Metformin is a widely used drug for type-2 diabetes, and is also known as a promising candidate anti-cancer agent from recent studies <i>in vitro</i> and <i>in vivo</i>. However, the mechanisms of metformin’s anti-cancer effects have not been elucidated. We demonstrated that metformin suppressed the expression of miR-221, one of the most well-known oncogenic microRNAs, in human pancreatic cancer PANC-1 cells. Moreover, we showed that the down-regulation of miR-221 by metformin caused G1-phase arrest via the up-regulation of p27, one of the direct targets of miR-221. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is also a promising agent for cancer treatment. While recent studies showed that treatment with only TRAIL was not effective against pancreatic cancer cells, the present data showed that metformin sensitized p53-mutated pancreatic cancer cells to TRAIL. Metformin induced the expressions of death receptor 5 (DR5), a receptor for TRAIL, and Bim with a pro-apoptotic function in the downstream of TRAIL-DR5 pathway. We suggest that the up-regulation of these proteins may contribute to sensitization of TRAIL-induced apoptosis. The combination therapy of metformin and TRAIL could therefore be effective in the treatment of pancreatic cancer.</p></div

    Bioprinted Vascularized Mature Adipose Tissue with Collagen Microfibers for Soft Tissue Regeneration

    No full text
    The development of soft tissue regeneration has recently gained importance due to safety concerns about artificial breast implants. Current autologous fat graft implantations can result in up to 90% of volume loss in long-term outcomes due to their limited revascularization. Adipose tissue has a highly vascularized structure which enables its proper homeostasis as well as its endocrine function. Mature adipocytes surrounded by a dense vascular network are the specific features required for efficient regeneration of the adipose tissue to perform host anastomosis after its implantation. Recently, bioprinting has been introduced as a promising solution to recreate in vitro this architecture in large-scale tissues. However, the in vitro induction of both the angiogenesis and adipogenesis differentiations from stem cells yields limited maturation states for these two pathways. To overcome these issues, we report a novel method for obtaining a fully vascularized adipose tissue reconstruction using supporting bath bioprinting. For the first time, directly isolated mature adipocytes encapsulated in a bioink containing physiological collagen microfibers (CMF) were bioprinted in a gellan gum supporting bath. These multilayered bioprinted tissues retained high viability even after 7 days of culture. Moreover, the functionality was also confirmed by the maintenance of fatty acid uptake from mature adipocytes. Therefore, this method of constructing fully functional adipose tissue regeneration holds promise for future clinical applications

    Resibufogenin Induces G1-Phase Arrest through the Proteasomal Degradation of Cyclin D1 in Human Malignant Tumor Cells

    No full text
    <div><p>Huachansu, a traditional Chinese medicine prepared from the dried toad skin, has been used in clinical studies for various cancers in China. Resibufogenin is a component of huachansu and classified as bufadienolides. Resibufogenin has been shown to exhibit the anti-proliferative effect against cancer cells. However, the molecular mechanism of resibufogenin remains unknown. Here we report that resibufogenin induces G1-phase arrest with hypophosphorylation of retinoblastoma (RB) protein and down-regulation of cyclin D1 expression in human colon cancer HT-29 cells. Since the down-regulation of cyclin D1 was completely blocked by a proteasome inhibitor MG132, the suppression of cyclin D1 expression by resibufogenin was considered to be in a proteasome-dependent manner. It is known that glycogen synthase kinase-3β (GSK-3β) induces the proteasomal degradation of cyclin D1. The addition of GSK-3β inhibitor SB216763 inhibited the reduction of cyclin D1 caused by resibufogenin. These effects on cyclin D1 by resibufogenin were also observed in human lung cancer A549 cells. These findings suggest that the anti-proliferative effect of resibufogenin may be attributed to the degradation of cyclin D1 caused by the activation of GSK-3β.</p></div

    Metformin suppresses the cell growth of pancreatic cancer cells.

    No full text
    <p>(A) PANC-1, (B) MIA PaCa-2, and (C) AsPC-1 cells were treated with the indicated concentrations of metformin. After incubation for 72 hours, cells were counted by trypan blue dye exclusion assay. Data are the means ± SD of 3 determinations. *P<0.05, **P<0.01.</p
    corecore