195 research outputs found

    Prognostic value of single-subject grey matter networks in early multiple sclerosis

    Get PDF
    The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict five-year EDSS progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from magnetic resonance imaging (MRI), outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for five years (mean follow-up = 5.0 ± 0.6 years). Expanded Disability Status Scale (EDSS) was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again one year after baseline. Grey matter (GM) atrophy over one year and white matter (WM) lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on GM atrophy measures derived from a statistical parameter mapping (SPM)-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for GM atrophy, WM lesion load and the network measures, and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over five years through lower values for network degree [H(2)=30.0, p<0.001] and global efficiency [H(2)=31.3, p<0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups (H(2)= 1.5, p=0.474). Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of GM atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over GM atrophy and WM lesion load in predicting EDSS worsening (all p-values < 0.05). Our findings provide evidence that GM network reorganization over one year discloses relevant information about subsequent clinical worsening in RRMS. Early GM restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors

    The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling

    Get PDF
    SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARSCoV- 2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFNresponsive genes. Our results suggest that PARP9/DTX3Ldependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARSCoV- 2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself

    The zinc-binding motif in tankyrases is required for the structural integrity of the catalytic ADP-ribosyltransferase domain

    No full text
    Abstract Tankyrases are ADP-ribosylating enzymes that regulate many physiological processes in the cell and are considered promising drug targets for cancer and fibrotic diseases. The catalytic ADP-ribosyltransferase domain of tankyrases contains a unique zinc-binding motif of unknown function. Recently, this motif was suggested to be involved in the catalytic activity of tankyrases. In this work, we set out to study the effect of the zinc-binding motif on the activity, stability and structure of human tankyrases. We generated mutants of human tankyrase (TNKS) 1 and TNKS2, abolishing the zinc-binding capabilities, and characterized the proteins biochemically and biophysically in vitro. We further generated a crystal structure of TNKS2, in which the zinc ion was oxidatively removed. Our work shows that the zinc-binding motif in tankyrases is a crucial structural element which is particularly important for the structural integrity of the acceptor site. While mutation of the motif rendered TNKS1 inactive, probably due to introduction of major structural defects, the TNKS2 mutant remained active and displayed an altered activity profile compared to the wild-type

    Assay technologies facilitating drug discovery for ADP-ribosyl writers, readers and erasers

    No full text
    Abstract ADP-ribosylation is a post-translational modification catalyzed by writer enzymes — ADP-ribosyltransferases. The modification is part of many signaling events, can modulate the function and stability of target proteins, and often results in the recruitment of reader proteins that bind to the ADP-ribosyl groups. Erasers are integral actors in these signaling events and reverse the modification. ADP-ribosylation can be targeted with therapeutics and many inhibitors against writers exist, with some being in clinical use. Inhibitors against readers and erasers are sparser and development of these has gained momentum only in recent years. Drug discovery has been hampered by the lack of specific tools, however many significant advances in the methods have recently been reported. We discuss assays used in the field with a focus on methods allowing efficient identification of small molecule inhibitors and profiling against enzyme families. While human proteins are focused, the methods can be also applied to bacterial toxins and virus encoded erasers that can be targeted to treat infectious diseases in the future

    An Evolutionary Perspective on the Origin, Conservation and Binding Partner Acquisition of Tankyrases

    No full text
    Tankyrases are poly-ADP-ribosyltransferases that regulate many crucial and diverse cellular processes in humans such as Wnt signaling, telomere homeostasis, mitotic spindle formation and glucose metabolism. While tankyrases are present in most animals, functional differences across species may exist. In this work, we confirm the widespread distribution of tankyrases throughout the branches of multicellular animal life and identify the single-celled choanoflagellates as earliest origin of tankyrases. We further show that the sequences and structural aspects of TNKSs are well-conserved even between distantly related species. We also experimentally characterized an anciently diverged tankyrase homolog from the sponge Amphimedon queenslandica and show that the basic functional aspects, such as poly-ADP-ribosylation activity and interaction with the canonical tankyrase binding peptide motif, are conserved. Conversely, the presence of tankyrase binding motifs in orthologs of confirmed interaction partners varies greatly between species, indicating that tankyrases may have different sets of interaction partners depending on the animal lineage. Overall, our analysis suggests a remarkable degree of conservation for tankyrases, and that their regulatory functions in cells have likely changed considerably throughout evolution

    An evolutionary perspective on the origin, conservation and binding partner acquisition of tankyrases

    No full text
    Abstract Tankyrases are poly-ADP-ribosyltransferases that regulate many crucial and diverse cellular processes in humans such as Wnt signaling, telomere homeostasis, mitotic spindle formation and glucose metabolism. While tankyrases are present in most animals, functional differences across species may exist. In this work, we confirm the widespread distribution of tankyrases throughout the branches of multicellular animal life and identify the single-celled choanoflagellates as earliest origin of tankyrases. We further show that the sequences and structural aspects of TNKSs are well-conserved even between distantly related species. We also experimentally characterized an anciently diverged tankyrase homolog from the sponge Amphimedon queenslandica and show that the basic functional aspects, such as poly-ADP-ribosylation activity and interaction with the canonical tankyrase binding peptide motif, are conserved. Conversely, the presence of tankyrase binding motifs in orthologs of confirmed interaction partners varies greatly between species, indicating that tankyrases may have different sets of interaction partners depending on the animal lineage. Overall, our analysis suggests a remarkable degree of conservation for tankyrases, and that their regulatory functions in cells have likely changed considerably throughout evolution

    High-resolution crystal structure of human pERp1, a saposin-like protein involved in IgA, IgM and integrin maturation in the endoplasmic reticulum

    No full text
    Abstract The folding of disulfide bond containing proteins in the endoplasmic reticulum (ER) is a complex process that requires protein folding factors, some of which are protein-specific. The ER resident saposin-like protein pERp1 (MZB1, CNPY5) is crucial for the correct folding of IgA, IgM and integrins. pERp1 also plays a role in ER calcium homeostasis and plasma cell mobility. As an important factor for proper IgM maturation and hence immune function, pERp1 is upregulated in many auto-immune diseases. This makes it a potential therapeutic target. pERp1 belongs to the CNPY family of ER resident saposin-like proteins. To date, five of these proteins have been identified. All are implicated in protein folding and all contain a saposin-like domain. All previously structurally characterized saposins are involved in lipid binding. However, there are no reports of CNPY family members interacting with lipids, suggesting a novel function for the saposin fold. However, the molecular mechanisms of their function remain elusive. To date, no structure of any CNPY protein has been reported. Here, we present the high-resolution (1.4 Å) crystal structure of human pERp1 and confirm that it has a saposin-fold with unique structural elements not present in other saposin-fold structures. The implications for the role of CNPY proteins in protein folding in the ER are discussed

    A molecular toolbox for ADP-ribosyl binding proteins

    No full text
    Summary Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or viral infections, making them attractive drug targets. We present a robust and accessible assay applicable to both hydrolyzing or non-hydrolyzing binders of mono- and poly-ADP-ribosyl groups. This technology relies on a C-terminal tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of cysteine-linked mono- and poly-ADP-ribosyl groups or analogs. By fusing the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we generate robust FRET partners and confirm the interaction with 22 known ADP-ribosyl binders. The applicability for high-throughput screening of inhibitors is demonstrated with the SARS-CoV-2 nsp3 macrodomain, for which we identify suramin as a moderate-affinity yet non-specific inhibitor. High-affinity ADP-ribosyl binders fused to nanoluciferase complement this technology, enabling simple blot-based detection of ADP-ribosylated proteins. All these tools can be produced in Escherichia coli and will help in ADP-ribosylation research and drug discovery

    Preparation of screening assays for ADP-ribosyl readers and erasers using the GAP-tag as a binding probe

    No full text
    Abstract Here, we describe a protocol to set up a screening assay for ADP-ribosyl binding proteins including proteins that possess O-glycosidase or N-glycosidase activities. The FRET-based assay measures the interaction of any ADP-ribosyl binding protein fused to CFP with a cysteine-ADP-ribosylated GAP-tag fused to YFP. Recombinant PtxS1 and PARP2 are used to mono-ADP-ribosylate and poly-ADP-ribosylate the GAP-tag. The protocol does not require specialized compounds or substrates, making it accessible and easy to adapt in any laboratory or for other proteins of interest. For complete details on the use and execution of this profile, please refer to Sowa et al. (2021)

    A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases

    No full text
    Abstract Tankyrases catalyse poly-ADP-ribosylation of their binding partners and the modification serves as a signal for the subsequent proteasomal degradation of these proteins. Tankyrases thereby regulate the turnover of many proteins involved in multiple and diverse cellular processes, such as mitotic spindle formation, telomere homeostasis and Wnt/β-catenin signalling. In recent years, tankyrases have become attractive targets for the development of inhibitors as potential therapeutics against cancer and fibrosis. Further, it has become clear that tankyrases are not only enzymes, but also act as scaffolding proteins forming large cellular signalling complexes. While many potent and selective tankyrase inhibitors of the poly-ADP-ribosylation function exist, the inhibition of tankyrase scaffolding functions remains scarcely explored. In this work we present a robust, simple and cost-effective high-throughput screening platform based on FRET for the discovery of small molecule probes targeting the protein–protein interactions of tankyrases. Validatory screening with the platform led to the identification of two compounds with modest binding affinity to the tankyrase 2 ARC4 domain, demonstrating the applicability of this approach. The platform will facilitate identification of small molecules binding to tankyrase ARC or SAM domains and help to advance a structure-guided development of improved chemical probes targeting tankyrase oligomerization and substrate protein interactions
    corecore