24 research outputs found

    Inhibition of microRNA-33b in humanized mice ameliorates nonalcoholic steatohepatitis

    Get PDF
    マイクロRNA-33bの阻害は非アルコール性脂肪肝炎を改善する --核酸医薬による治療応用へ--. 京都大学プレスリリース. 2023-06-13.Nonalcoholic steatohepatitis (NASH) can lead to cirrhosis and hepatocellular carcinoma in their advanced stages; however, there are currently no approved therapies. Here, we show that microRNA (miR)-33b in hepatocytes is critical for the development of NASH. miR-33b is located in the intron of sterol regulatory element–binding transcription factor 1 and is abundantly expressed in humans, but absent in rodents. miR-33b knock-in (KI) mice, which have a miR-33b sequence in the same intron of sterol regulatory element–binding transcription factor 1 as humans and express miR-33b similar to humans, exhibit NASH under high-fat diet feeding. This condition is ameliorated by hepatocyte-specific miR-33b deficiency but unaffected by macrophage-specific miR-33b deficiency. Anti-miR-33b oligonucleotide improves the phenotype of NASH in miR-33b KI mice fed a Gubra Amylin NASH diet, which induces miR-33b and worsens NASH more than a high-fat diet. Anti-miR-33b treatment reduces hepatic free cholesterol and triglyceride accumulation through up-regulation of the lipid metabolism–related target genes. Furthermore, it decreases the expression of fibrosis marker genes in cultured hepatic stellate cells. Thus, inhibition of miR-33b using nucleic acid medicine is a promising treatment for NASH

    microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity

    Get PDF
    褐色脂肪細胞の燃焼を促す新たなメカニズムを解明 --体の熱産生にマイクロRNA-33が関与--. 京都大学プレスリリース. 2021-02-17.Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33−/− mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-β-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/f DBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress

    Coupling Ion Specificity of the Flagellar Stator Proteins MotA1/MotB1 of Paenibacillus sp. TCA20

    No full text
    The bacterial flagellar motor is a reversible rotary molecular nanomachine, which couples ion flux across the cytoplasmic membrane to torque generation. It comprises a rotor and multiple stator complexes, and each stator complex functions as an ion channel and determines the ion specificity of the motor. Although coupling ions for the motor rotation were presumed to be only monovalent cations, such as H+ and Na+, the stator complex MotA1/MotB1 of Paenibacillus sp. TCA20 (MotA1TCA/MotB1TCA) was reported to use divalent cations as coupling ions, such as Ca2+ and Mg2+. In this study, we initially aimed to measure the motor torque generated by MotA1TCA/MotB1TCA under the control of divalent cation motive force; however, we identified that the coupling ion of MotA1TCAMotB1TCA is very likely to be a monovalent ion. We engineered a series of functional chimeric stator proteins between MotB1TCA and Escherichia coli MotB. E. coli ΔmotAB cells expressing MotA1TCA and the chimeric MotB presented significant motility in the absence of divalent cations. Moreover, we confirmed that MotA1TCA/MotB1TCA in Bacillus subtilis ΔmotABΔmotPS cells generates torque without divalent cations. Based on two independent experimental results, we conclude that the MotA1TCA/MotB1TCA complex directly converts the energy released from monovalent cation flux to motor rotation

    Synthesis of a New Mixed-valence Decanuclear Cu(I)-Cu(II) Cluster with a Hexamethylene Dithiocarbamate Ligand

    Get PDF
    [Abstract] A new mixed-valence decanuclear Cu(I)-Cu(II) cluster, [Cu^I_6Cu^_4Br_6(Hm-dtc)_8]•2CHCl_3 (1) (Hm—dtc^- = hexamethylene—dithiocarbamate) with a dithiocarbamate derivative has been synthesized and structurally characterized. Complex 1consists of four mononuclear Cu(II) dithiocarbamate units and bridging Cu(I)-Br moieties. This decanuclear cluster forms an infinite one-dimensional assembly by weak Cu・・・S contacts between the mononuclear Cu(II) dithiocarbamate units. This complex shows large absorptions broadened to NIR region, which might be induced by the delocalization of the d-electron of copper(II) ions

    Lectin-like oxidized low-density lipoprotein receptor-1 is required for the adipose tissue expression of proinflammatory cytokines in high-fat diet-induced obese mice

    Get PDF
    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is a receptor for oxidized LDL, and is strongly expressed in endothelial cells at an early stage of atherosclerosis. LOX-1 expression in adipocytes is induced by PPARgamma (ligands and appears to be involved in adipocyte cholesterol metabolism. However, the role of adipose tissue LOX-1 in high-fat diet-induced obesity is unknown. We found that mRNA levels of adipose tissue LOX-1 were markedly increased in obese mice fed a high-fat diet (HFD) compared with those fed normal chow. The levels were closely correlated with those of a proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Then, LOX-1 knockout (LOX-1-KO) and wild-type (WT) mice were fed HFD for 16weeks. HFD feeding increased the body and mesenteric fat weights similarly in WT and LOX-1-KO mice. HFD-induced expressions of proinflammatory cytokines such as MCP-1, MIP-1alpha, and IL-6 were significantly less in LOX-1-KO than WT mice. Thus, LOX-1 is required for the HFD-induced expression of proinflammatory cytokines in the adipose tissue of obese mice

    Cardiac-Specific Inhibition of Kinase Activity in Calcium/Calmodulin-Dependent Protein Kinase Kinase-β Leads to Accelerated Left Ventricular Remodeling and Heart Failure after Transverse Aortic Constriction in Mice

    Get PDF
    [Background]The mechanism of cardiac energy production against sustained pressure overload remains to be elucidated. [Methods and Results]We generated cardiac-specific kinase-dead (kd) calcium/calmodulin-dependent protein kinase kinase-β (CaMKKβ) transgenic (α-MHC CaMKKβ[kd] TG) mice using α-myosin heavy chain (α-MHC) promoter. Although CaMKKβ activity was significantly reduced, these mice had normal cardiac function and morphology at baseline. Here, we show that transverse aortic binding (TAC) in α-MHC CaMKKβ[kd] TG mice led to accelerated death and left ventricular (LV) dilatation and dysfunction, which was accompanied by significant clinical signs of heart failure. CaMKKβ downstream signaling molecules, including adenosine monophosphate-activated protein kinase (AMPK), were also suppressed in α-MHC CaMKKβ[kd] TG mice compared with wild-type (WT) mice. The expression levels of peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, which is a downstream target of both of CaMKKβ and calcium/calmodulin kinases, were also significantly reduced in α-MHC CaMKKβ[kd] TG mice compared with WT mice after TAC. In accordance with these findings, mitochondrial morphogenesis was damaged and creatine phosphate/β-ATP ratios assessed by magnetic resonance spectroscopy were suppressed in α-MHC CaMKKβ[kd] TG mice compared with WT mice after TAC. [Conclusions]These data indicate that CaMKKβ exerts protective effects on cardiac adaptive energy pooling against pressure-overload possibly through phosphorylation of AMPK and by upregulation of PGC-1α. Thus, CaMKKβ may be a therapeutic target for the treatment of heart failure

    MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice

    Get PDF
    脂肪酸とコレステロール合成の切り替えスイッチの発見に成功 -安全な動脈硬化改善薬の開発に期待-. 京都大学プレスリリース. 2013-12-03.MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports have indicated that miR-33, which is located within the intron of sterol regulatory element-binding protein (SREBP) 2, controls cholesterol homoeostasis and may be a potential therapeutic target for the treatment of atherosclerosis. Here we show that deletion of miR-33 results in marked worsening of high-fat diet-induced obesity and liver steatosis. Using miR-33−/−Srebf1+/− mice, we demonstrate that SREBP-1 is a target of miR-33 and that the mechanisms leading to obesity and liver steatosis in miR-33−/− mice involve enhanced expression of SREBP-1. These results elucidate a novel interaction between SREBP-1 and SREBP-2 mediated by miR-33 in vivo

    MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo.

    Get PDF
    マウスへのマイクロRNA-33bの導入に成功 -ヒトでのHDL-コレステロールの質の改善に期待-. 京都大学プレスリリース. 2014-06-17.MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports, including ours, indicated that miR-33a located within the intron of sterol regulatory element-binding protein (SREBP) 2 controls cholesterol homeostasis and can be a possible therapeutic target for treating atherosclerosis. Primates, but not rodents, express miR-33b from an intron of SREBF1. Therefore, humanized mice, in which a miR-33b transgene is inserted within a Srebf1 intron, are required to address its function in vivo. We successfully established miR-33b knock-in (KI) mice and found that protein levels of known miR-33a target genes, such as ABCA1, ABCG1, and SREBP-1, were reduced compared with those in wild-type mice. As a consequence, macrophages from the miR-33b KI mice had a reduced cholesterol efflux capacity via apoA-I and HDL-C. Moreover, HDL-C levels were reduced by almost 35% even in miR-33b KI hetero mice compared with the control mice. These results indicate that miR-33b may account for lower HDL-C levels in humans than those in mice and that miR-33b is possibly utilized for a feedback mechanism to regulate its host gene SREBF1. Our mice will also aid in elucidating the roles of miR-33a/b in different genetic disease models

    Dye-sensitized Solar Cells with New One-Dimensional Halide-Bridged Cu(I)–Ni(II) Heterometal Coordination Polymers Containing Hexamethylene Dithiocarbamate Ligand

    No full text
    One-dimensional (1D) halide-bridged Cu(I)–Ni(II) heterometal coordination polymers containing a hexamethylene dithiocarbamate (Hm-dtc) ligand have been synthesized and crystallographically characterized. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the coordination polymers were estimated using UV-Vis-NIR and photoelectron spectroscopies, and it was revealed that these coordination polymers have appropriate HOMO levels for use as dye sensitizers. Direct-current electrical conductivity measurements and impedance measurements indicated that these 1D Cu(I)–Ni(II) heterometal coordination polymers were insulators (σ300K < 10−12 S cm−1). In addition, the coordination polymers were used as sensitizing materials in dye-sensitized solar cells (DSSCs). DSSCs with 1D Cu(I)–Ni(II) heterometal coordination polymers showed lower performances than those with 1D halide-bridged Cu(I)–Cu(II) mixed-valence coordination polymers
    corecore