15 research outputs found

    Essential Insight of Direct Electron Transfer-Type Bioelectrocatalysis by Membrane-Bound d-Fructose Dehydrogenase with Structural Bioelectrochemistry

    Get PDF
    電極を基質認識できる酵素の反応メカニズムを解明 --次世代バイオセンシングにつながる基盤技術--. 京都大学プレスリリース. 2023-10-16.Flavin adenine dinucleotide-dependent d-fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260, a membrane-bound heterotrimeric flavohemoprotein capable of direct electron transfer (DET)-type bioelectrocatalysis, was investigated from the perspective of structural biology, bioelectrochemistry, and protein engineering. DET-type reactions offer several benefits in biomimetics (e.g., biofuel cells, bioreactors, and biosensors) owing to their mediator-less configuration. FDH provides an intense DET-type catalytic signal; therefore, extensive research has been conducted on the fundamental principles and applications of biosensors. Structural analysis using cryo-electron microscopy and single-particle analysis has revealed the entire FDH structures with resolutions of 2.5 and 2.7 Å for the reduced and oxidized forms, respectively. The electron transfer (ET) pathway during the catalytic oxidation of d-fructose was investigated by using both thermodynamic and kinetic approaches. Structural analysis has shown the localization of the electrostatic surface charges around heme 2c in subunit II, and experiments using functionalized electrodes with a controlled surface charge support the notion that heme 2c is the electrode-active site. Furthermore, two aromatic amino acid residues (Trp427 and Phe489) were located in a possible long-range ET pathway between heme 2c and the electrode. Two variants (W427A and F489A) were obtained by site-directed mutagenesis, and their effects on DET-type activity were elucidated. The results have shown that Trp427 plays an essential role in accelerating long-range ET and triples the standard rate constant of heterogeneous ET according to bioelectrochemical analysis

    Structure and function relationship of formate dehydrogenases: an overview of recent progress

    Get PDF
    Formate dehydrogenases (FDHs) catalyze the two-electron oxidation of formate to carbon dioxide. FDHs can be divided into several groups depending on their subunit composition and active-site metal ions. Metal-dependent (Mo- or W-containing) FDHs from prokaryotic organisms belong to the superfamily of molybdenum enzymes and are members of the dimethylsulfoxide reductase family. In this short review, recent progress in the structural analysis of FDHs together with their potential biotechnological applications are summarized

    Experimental and Theoretical Insights into Bienzymatic Cascade for Mediatorless Bioelectrochemical Ethanol Oxidation with Alcohol and Aldehyde Dehydrogenases

    No full text
    The efficient utilization of biomass fuels is a critical component of a sustainable energy economy. Via respiration, acetic acid bacteria can oxidize biomass ethanol into acetic acid using membrane-bound alcohol and aldehyde dehydrogenases (ADH and AlDH, respectively). Focusing on the ability of these enzymes to interact directly and electrically with electrode materials, we constructed a mediatorless bioanode for ethanol oxidation based on a direct electron transfer (DET)-type bienzymatic cascade by ADH and AlDH. The three-dimensional structural data of ADH and AlDH elucidated by cryo-electron microscopy were valuable for effectively designing electrode platforms with multi-walled carbon nanotubes (MWCNTs) and pyrene derivatives. DET-type bioelectrocatalysis by ADH and AlDH was improved by using 1-pyrene carboxylic acid-functionalized MWCNT. The catalytic current densities for bienzymatic ethanol oxidation were recorded at the bioanodes modified by various ADH/AlDH ratios. The reaction model was constructed by focusing on the competitive ad-sorption of two enzymes on the electrode surface and the collection efficiency of the intermediately produced acetaldehyde. The power output of an ethanol/air biofuel cell using the bienzymatic bioanode reached 0.48 ± 0.01 mW cm–2, which is the highest value reported for ethanol biofuel cells. In addition, the Faraday efficiency of acetate production by the cell reached 100 ± 4%. This study will lead to efficient conversion of biomass fuels based on a multi-catalytic cascade system

    Structural and Bioelectrochemical Elucidation of Direct Electron Transfer-type Membrane-bound Fructose Dehydrogenase

    No full text
    Flavin adenine dinucleotide (FAD)-dependent fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260, a membrane-bound flavohemoprotein capable of direct electron transfer (DET)-type bioelectrocatalysis, was investigated from the viewpoints of structural biology and bioelectrochemistry. As FDH provides a strong DET-type catalytic signal, extensive research has been conducted. Structural analysis using cryo-electron microscopy (cryo-EM) and single-particle analysis revealed the entire FDH structure. The electron transfer (ET) pathway during the catalytic oxidation of D-fructose was investigated using thermodynamic and kinetic approaches in bioelectrochemistry, as well as structural information. Key amino acid residues that play important roles in substrate specificity and ET acceleration have also been proposed
    corecore