24,492 research outputs found

    Orbital magnetism in axially deformed sodium clusters: From scissors mode to dia-para magnetic anisotropy

    Get PDF
    Low-energy orbital magnetic dipole excitations, known as scissors mode (SM), are studied in alkali metal clusters. Subsequent dynamic and static effects are explored. The treatment is based on a self-consistent microscopic approach using the jellium approximation for the ionic background and the Kohn-Sham mean field for the electrons. The microscopic origin of SM and its main features (structure of the mode in light and medium clusters, separation into low- and high-energy plasmons, coupling high-energy M1 scissors and E2 quadrupole plasmons, contributions of shape isomers, etc) are discussed. The scissors M1 strength acquires large values with increasing cluster size. The mode is responsible for the van Vleck paramagnetism of spin-saturated clusters. Quantum shell effects induce a fragile interplay between Langevin diamagnetism and van Vleck paramagnetism and lead to a remarkable dia-para anisotropy in magnetic susceptibility of particular light clusters. Finally, several routes for observing the SM experimentally are discussed.Comment: 21 pages, 7 figure

    Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states

    Full text link
    We address the estimation of the loss parameter of a bosonic channel probed by arbitrary signals. Unlike the optimal Gaussian probes, which can attain the ultimate bound on precision asymptotically either for very small or very large losses, we prove that Fock states at any fixed photon number saturate the bound unconditionally for any value of the loss. In the relevant regime of low-energy probes, we demonstrate that superpositions of the first low-lying Fock states yield an absolute improvement over any Gaussian probe. Such few-photon states can be recast quite generally as truncations of de-Gaussified photon-subtracted states.Comment: 4 pages, 3 figure

    Caracterização climática das séries temporais de temperatura e precipitação pluvial em Sete Lagoas, MG.

    Get PDF
    bitstream/item/55113/1/Caracterizacao-climatica.pd

    Temperature oscillations of magnetization observed in nanofluid ferromagnetic graphite

    Full text link
    We report on unusual magnetic properties observed in the nanofluid room-temperature ferromagnetic graphite (with an average particle size of l=10nm). More precisely, the measured magnetization exhibits a low-temperature anomaly (attributed to manifestation of finite size effects below the quantum temperature) as well as pronounced temperature oscillations above T=50K (attributed to manifestation of the hard-sphere type pair correlations between ferromagnetic particles in the nanofluid)

    Solid wood treated by plasma jet.

    Get PDF
    Editado por Luiz Henrique Capparelli Mattoso, Alcides Leão e Elisabete Frollini
    corecore