24,492 research outputs found
Orbital magnetism in axially deformed sodium clusters: From scissors mode to dia-para magnetic anisotropy
Low-energy orbital magnetic dipole excitations, known as scissors mode (SM),
are studied in alkali metal clusters. Subsequent dynamic and static effects are
explored. The treatment is based on a self-consistent microscopic approach
using the jellium approximation for the ionic background and the Kohn-Sham mean
field for the electrons. The microscopic origin of SM and its main features
(structure of the mode in light and medium clusters, separation into low- and
high-energy plasmons, coupling high-energy M1 scissors and E2 quadrupole
plasmons, contributions of shape isomers, etc) are discussed. The scissors M1
strength acquires large values with increasing cluster size. The mode is
responsible for the van Vleck paramagnetism of spin-saturated clusters. Quantum
shell effects induce a fragile interplay between Langevin diamagnetism and van
Vleck paramagnetism and lead to a remarkable dia-para anisotropy in magnetic
susceptibility of particular light clusters. Finally, several routes for
observing the SM experimentally are discussed.Comment: 21 pages, 7 figure
Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states
We address the estimation of the loss parameter of a bosonic channel probed
by arbitrary signals. Unlike the optimal Gaussian probes, which can attain the
ultimate bound on precision asymptotically either for very small or very large
losses, we prove that Fock states at any fixed photon number saturate the bound
unconditionally for any value of the loss. In the relevant regime of low-energy
probes, we demonstrate that superpositions of the first low-lying Fock states
yield an absolute improvement over any Gaussian probe. Such few-photon states
can be recast quite generally as truncations of de-Gaussified photon-subtracted
states.Comment: 4 pages, 3 figure
Caracterização climática das séries temporais de temperatura e precipitação pluvial em Sete Lagoas, MG.
bitstream/item/55113/1/Caracterizacao-climatica.pd
Temperature oscillations of magnetization observed in nanofluid ferromagnetic graphite
We report on unusual magnetic properties observed in the nanofluid
room-temperature ferromagnetic graphite (with an average particle size of
l=10nm). More precisely, the measured magnetization exhibits a low-temperature
anomaly (attributed to manifestation of finite size effects below the quantum
temperature) as well as pronounced temperature oscillations above T=50K
(attributed to manifestation of the hard-sphere type pair correlations between
ferromagnetic particles in the nanofluid)
Solid wood treated by plasma jet.
Editado por Luiz Henrique Capparelli Mattoso, Alcides Leão e Elisabete Frollini
- …