7 research outputs found

    Characterization of the cicatrization process in diabetic foot ulcers based on the production of reactive oxygen species

    Get PDF
    The present study aims at evaluating the correlation between the free radical formation and the healing action of lower limbs’ ulcers in a randomized controlled trial with the use of an adhesive derived from natural latex associated with a light-emitting diode (LED) circuit. The sample consists of 15 participants with lower limb lesions divided into three groups: group 1 case (5 participants) received the proposed dressing system adhesive of the natural latex associated with the LED circuit; group 2 control (5 participants) received the dressings at home performed by nurses according to and established by the clinic of wounds (treated with calcium alginate or silver foam); and group 3 (5 participants) also received the dressing in their homes with the use of the dressing adhesive derived from the natural latex associated with the LED circuit. The collected data were analyzed qualitatively and quantitatively by electron paramagnetic resonance for determination of free radical formation. Kruskal-Wallis statistical test was used to evaluate the effect of treatment on the lower limb’s ulcer cicatrization process and its correlation with free radical. The results obtained corroborated the hypothesis about the reduction of the quantity of these molecules in the end of treatment related to the healing wound

    Cytoglobin attenuates neuroinflammation in lipopolysaccharide-activated primary preoptic area cells via NF-ÎşB pathway inhibition

    Get PDF
    Cytoglobin (Cygb) is a hexacoordinate protein, associated with the transport of oxygen, nitric oxide scavenging, tumor suppression and protection against oxidative stress and inflammation. This protein is expressed in brain areas including the preoptic area (POA) of the anterior hypothalamus, the region responsible for the regulation of body temperature. In this study, we show that Cygb is upregulated in the rat hypothalamus 2.5 h and 5 h after intravenous administration of lipopolysaccharide (LPS). We investigated the effect of treatment with Cygb in POA primary cultures stimulated with LPS for 4 h. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were measured and the results showed that Cygb reduced the concentrations of both cytokines. We further observed a decrease in immunoreactivity of the inflammatory transcription factor nuclear factor-κB (NF-κB), but not NF-IL6 and STAT3, in the nucleus of Cygb-treated POA cells. These findings suggest that Cygb attenuates the secretion of IL-6 and TNF-α in LPS-stimulated POA primary cultures via inhibition of the NF-κB signaling pathway, indicating that this protein might play an important role in the control of neuroinflammation and fever

    Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation

    No full text
    The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever

    Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model

    No full text
    Abstract Background In the photodynamic therapy (PDT), the photosensitizer absorbs light and transfers the energy of the excited state to the oxygen in the cell environment producing reactive oxygen species (ROS), that in its turn, may cause cell damage. In the photothermal therapy (PTT), light also is responsible for activating the photothermal agent, which converts the absorbed energy in heat. Graphene oxide is a carbon-based material that presents photothermal activity. Its physical properties allow the association with the photosensitizer methylene blue and consequently the production of ROS when submitted to light irradiation. Therefore, the association between nanographene oxide and methylene blue could represent a strategy to enhance therapeutic actions. In this work, we report the nanographene oxide-methylene blue platform (NanoGO-MB) used to promote tumor ablation in combination with photodynamic and photothermal therapies against a syngeneic orthotopic murine breast cancer model. Results In vitro, NanoGO-MB presented 50% of the reactive oxygen species production compared to the free MB after LED light irradiation, and a temperature increase of ~ 40 °C followed by laser irradiation. On cells, the ROS production by the nanoplatform displayed higher values in tumor than normal cells. In vivo assays demonstrated a synergistic effect obtained by the combined PDT/PTT therapies using NanoGO-MB, which promoted complete tumor ablation in 5/5 animals. Up to 30 days after the last treatment, there was no tumor regrowth compared with only PDT or PTT groups, which displayed tumoral bioluminescence 63-fold higher than the combined treatment group. Histological studies confirmed that the combined therapies were able to prevent tumor regrowth and liver, lung and spleen metastasis. In addition, low systemic toxicity was observed in pathologic examinations of liver, spleen, lungs, and kidneys. Conclusions The treatment with combined PDT/PTT therapies using NanoGO-MB induced more toxicity on breast carcinoma cells than on normal cells. In vivo, the combined therapies promoted complete tumor ablation and metastasis prevention while only PDT or PTT were unable to stop tumor development. The results show the potential of NanoGO-MB in combination with the phototherapies in the treatment of the breast cancer and metastasis prevention

    Upconversion fluorescence imaging of HeLa cells using ROS generating SiO2-coated lanthanide-doped NaYF4 nanoconstructs

    No full text
    Inorganic nanomaterials able to generate reactive oxygen species (ROS) are promising components for modern medical applications. Activated by near-infrared light, up-converting beta-NaYF4 doped with Er3+ - Yb3+ and Tm3+- Yb3+ pair ions nanoparticles (UCNPs), have a wide range of applications in biological imaging as compared to traditional reagents excited by ultra-violet or visible light. We analysed the green-red and the blue-red luminescence to explain the mechanism of the upconversion depended on the surface condition. The influence of SiO2 coating on the cytotoxicity of the as-produced UCNPs towards HeLa cancer cells was reported. We demonstrated a possibility of a direct UCNPs application to photodynamic therapy, without need to attach additional molecules to their surface. The presence of Tm3+ - Yb3+ pair ions, thus ROS generation capability, renders the SiO2 shell coated nanoparticles to become potentially useful theranostic agent

    Evaluation of biocompatibility, anti-inflammatory, and antinociceptive activities of pequi oil-based nanoemulsion in in vitro and in vivo models

    No full text
    Pequi oil (Caryocar brasiliense) contains bioactive compounds capable of modulating the inflammatory process; however, its hydrophobic characteristic limits its therapeutic use. The encapsulation of pequi oil in nanoemulsions can improve its biodistribution and promote its immunomodulatory effects. Thus, the objective of the present study was to formulate pequi oil-based nanoemulsions (PeNE) to evaluate their biocompatibility, anti-inflammatory, and antinociceptive effects in in vitro (macrophages—J774.16) and in vivo (Rattus novergicus) models. PeNE were biocompatible, showed no cytotoxic and genotoxic effects and no changes in body weight, biochemistry, or histology of treated animals at all concentrations tested (90–360 µg/mL for 24 h, in vitro; 100–400 mg/kg p.o. 15 days, in vivo). It was possible to observe antinociceptive effects in a dose-dependent manner in the animals treated with PeNE, with a reduction of 27 and 40% in the doses of 100 and 400 mg/kg of PeNE, respectively (p < 0.05); however, the treatment with PeNE did not induce edema reduction in animals with carrageenan-induced edema. Thus, the promising results of this study point to the use of free and nanostructured pequi oil as a possible future approach to a preventive/therapeutic complementary treatment alongside existing conventional therapies for analgesia.Instituto de Ciências Biológicas (IB)Departamento de Biologia Celular (IB CEL)Faculdade UnB Ceilândia (FCE)Curso de Farmácia (FCE-FAR)Faculdade de Medicina (FM)Faculdade UnB Gama (FGA)Faculdade UnB Planaltina (FUP)Programa de Pós-Graduação em Nanociência e NanobiotecnologiaPrograma de Pós-Graduação em Ciências e Tecnologias em Saúd
    corecore