32 research outputs found

    Close-up images of the final Philae landing site on comet 67P/Churyumov-Gerasimenko acquired by the ROLIS camera

    Get PDF
    After coming to rest on the night side of comet 67P/Churyumov-Gerasimenko, the ROLIS camera on-board Rosetta’s Philae lander acquired five images of the surface below the lander, four of which were with the aid of LED illumination of different colors. The images confirm that Philae was perched on a sloped surface. A local horizon is visible in one corner of the image, beyond which we can see the coma. Having spent a full day on the surface Philae was commanded to lift and rotate, after which a final, sixth, LED image was acquired. The change in perspective allowed us to construct a shape model of the surface. The distance to the foreground was about 80 cm, much larger than the nominal 30 cm. This caused stray light, rather than directly reflected LED light, to dominate the image signal, complicating the analysis. The images show a lumpy surface with a roughness of apparently fractal nature. Its appearance is completely different from that of the first landing site, which was characterized by centimeter to meter-sized debris (Mottola et al., 2015). We recognize neither particles nor pores at the image resolution of 0.8 mm per pixel and large color variations are absent. The surface has a bi-modal brightness distribution that can be interpreted in terms of the degree of consolidation, a hypothesis that we support with experimental evidence. We propose the surface below the lander to consist of smooth, cracked plates with unconsolidated edges, similar to terrain seen in CIVA images

    Close-up images of the final Philae landing site on comet 67P/Churyumov-Gerasimenko acquired by the ROLIS camera

    No full text
    International audienceAfter coming to rest on the night side of comet 67P/Churyumov-Gerasimenko, the ROLIS camera on-board Rosetta's Philae lander acquired five images of the surface below the lander, four of which were with the aid of LED illumination of different colors. The images confirm that Philae was perched on a sloped surface. A local horizon is visible in one corner of the image, beyond which we can see the coma. Having spent a full day on the surface Philae was commanded to lift and rotate, after which a final, sixth, LED image was acquired. The change in perspective allowed us to construct a shape model of the surface. The distance to the foreground was about 80 cm, much larger than the nominal 30 cm. This caused stray light, rather than directly reflected LED light, to dominate the image signal, complicating the analysis. The images show a lumpy surface with a roughness of apparently fractal nature. Its appearance is completely different from that of the first landing site, which was characterized by centimeter to meter-sized debris (Mottola et al., 2015). We recognize neither particles nor pores at the image resolution of 0.8 mm per pixel and large color variations are absent. The surface has a bi-modal brightness distribution that can be interpreted in terms of the degree of consolidation, a hypothesis that we support with experimental evidence. We propose the surface below the lander to consist of smooth, cracked plates with unconsolidated edges, similar to terrain seen in CIVA images

    The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging

    No full text
    The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters. At the highest resolution of 1 centimeter per pixel, the surface appears granular, with no apparent deposits of unresolved sand-sized particles. The thickness of the regolith varies across the imaged field from 0 to 1 to 2 meters. The presence of aeolian-like features resembling wind tails hints at regolith mobilization and erosion processes. Modeling suggests that abrasion driven by airfall-induced particle “splashing” is responsible for the observed formations

    Estimating the Reduction in the Radiation Burden From Nuclear Cardiology Through Use of Stress-Only Imaging in the United States and Worldwide

    Get PDF
    Not availabl
    corecore