2,081 research outputs found

    On Logical Depth and the Running Time of Shortest Programs

    Get PDF
    The logical depth with significance bb of a finite binary string xx is the shortest running time of a binary program for xx that can be compressed by at most bb bits. There is another definition of logical depth. We give two theorems about the quantitative relation between these versions: the first theorem concerns a variation of a known fact with a new proof, the second theorem and its proof are new. We select the above version of logical depth and show the following. There is an infinite sequence of strings of increasing length such that for each jj there is a bb such that the logical depth of the jjth string as a function of jj is incomputable (it rises faster than any computable function) but with bb replaced by b+1b+1 the resuling function is computable. Hence the maximal gap between the logical depths resulting from incrementing appropriate bb's by 1 rises faster than any computable function. All functions mentioned are upper bounded by the Busy Beaver function. Since for every string its logical depth is nonincreasing in bb, the minimal computation time of the shortest programs for the sequence of strings as a function of jj rises faster than any computable function but not so fast as the Busy Beaver function.Comment: 12 pages LaTex (this supercedes arXiv:1301.4451

    Theoretical investigation of moir\'e patterns in quantum images

    Full text link
    Moir\'e patterns are produced when two periodic structures with different spatial frequencies are superposed. The transmission of the resulting structure gives rise to spatial beatings which are called moir\'e fringes. In classical optics, the interest in moir\'e fringes comes from the fact that the spatial beating given by the frequency difference gives information about details(high spatial frequency) of a given spatial structure. We show that moir\'e fringes can also arise in the spatial distribution of the coincidence count rate of twin photons from the parametric down-conversion, when spatial structures with different frequencies are placed in the path of each one of the twin beams. In other words,we demonstrate how moir\'e fringes can arise from quantum images

    Production of optical phase space vortices with non-locally distributed mode converters

    Full text link
    Optical vortices have been observed in a wide variety of optical systems. They can be observed directly in the wavefront of optical beams, or in the correlations between pairs of entangled photons. We present a novel optical vortex which appears in a non-local plane of the two-photon phase space, composed of a single degree of freedom of each photon of an entangled pair. The preparation of this vortex can be viewed as a "non-local" or distributed mode converter. We show how these novel optical vortices of arbitrary order can be prepared in the spatial degrees of freedom of entangled photons.Comment: To appear in upcoming special issue "Orbital Angular Momentum" of the Journal of Optic

    Moir\'e patterns in quantum images

    Get PDF
    We observed moir\'e fringes in spatial quantum correlations between twin photons generated by parametric down-conversion. Spatially periodic structures were nonlocally superposed giving rise to beat frequencies typical of moir\'e patterns. This result brings interesting perspectives regarding metrological applications of such a quantum optical setup.Comment: 4 pages, 5 figure

    Conservation of Orbital Angular Momentum in Stimulated Down-Conversion

    Get PDF
    We report on an experiment demonstrating the conservation of orbital angular momentum in stimulated down-conversion. The orbital angular momentum is not transferred to the individual beams of the spontaneous down-conversion, but it is conserved when twin photons are taken individually. We observe the conservation law for an individual beam of the down-conversion through cavity-free stimulated emission.Comment: Submitted for publication in Phys. Rev. Let

    Linseed essential oil - Source of Lipids as Active Ingredients for Pharmaceuticals and Nutraceuticals

    Get PDF
    Linseed - also known as flaxseed -, is known for its beneficial effects on animal health attributed to its composition, comprising omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids, various dietary fibers and lignans, which have health benefits in reducing the risk of cancer and cardiovascular diseases, lowering the levels of LDL-cholesterol and relaxing the smooth muscle cells in arteries increasing the blood flow. Essential fatty acids from flax participate in several metabolic processes of the cell, not only as structuring components of the cell membrane, but also as storage lipids. Flax is consumed in the form of seeds (whole, milled or roasted), as an oil and as flour to provide basic nutrition. Flax can be considered a functional food. Several formulations containing flax are available on the market in the form of e.g. capsules and microencapsulated powders having potential as nutraceuticals for their beneficial effects on health. This paper revises the different lipid classes found in flaxseeds and their genomics. It also discusses the beneficial effects of flax and flaxseed oil and their biological advantages as ingredients in pharmaceuticals and in nutraceuticals products.info:eu-repo/semantics/publishedVersio
    • …
    corecore