
ar
X

iv
:1

31
0.

69
76

v1
 [

cs
.C

C
]

 2
5

O
ct

 2
01

3

On Logical Depth and the Running Time of

Shortest Programs

L. Antunes, A. Souto, and P.M.B. Vitányi

Abstract

The logical depth with significance b of a finite binary string x
is the shortest running time of a binary program for x that can be
compressed by at most b bits. There is another definition of logical
depth. We give two theorems about the quantitative relation between
these versions: the first theorem concerns a variation of a known fact
with a new proof, the second theorem and its proof are new. We select
the above version of logical depth and show the following. There is
an infinite sequence of strings of increasing length such that for each j
there is a b such that the logical depth of the jth string as a function
of j is incomputable (it rises faster than any computable function) but
with b replaced by b+1 the resuling function is computable. Hence the
maximal gap between the logical depths resulting from incrementing
appropriate b’s by 1 rises faster than any computable function. All
functions mentioned are upper bounded by the Busy Beaver function.
Since for every string its logical depth is nonincreasing in b, the minimal
computation time of the shortest programs for the sequence of strings
as a function of j rises faster than any computable function but not so
fast as the Busy Beaver function.

L. Antunes is with Instituto de Telecomunicações and Faculdade de Ciências Univer-
sidade do Porto. He was supported by FCT projects PEst-OE/EEI/LA0008/2011 and
PTDC/EIA-CCO/099951/2008. Address: Departamento de Ciência de Computadores
R.Campo Alegre, 1021/1055, 4169 - 007 Porto - Portugal. Email: lfa@dcc.fc.up.pt

A. Souto is with Instituto de Telecomunicações and Instituto Superior Técnico, Universi-
dade Técnica de Lisboa. He was supported by FCT projects PEst-OE/EEI/LA0008/2011,
PTDC/EIA-CCO/099951/2008 and the grant SFRH/BPD/76231/2011. Address: Depar-
tamento de Matemática IST Av. Rovisco Pais, 1, 1049-001 Lisboa - Portugal. Email:
a.souto@math.ist.utl.pt

P.M.B. Vitányi is with CWI and University of Amsterdam. Address: CWI, Science Park
123, 1098XG Amsterdam, The Netherlands. Email: Paul.Vitanyi@cwi.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301634103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1310.6976v1

1 Introduction

The logical depth is related to complexity with bounded resources. Com-
puting a string x from one of its shortest programs may take a very long
time. However, computing the same string from a simple ‘print(x)’ program
of length about |x| bits takes very little time.

A program for x of larger length than a given program for xmay decrease
the computation time but in general does not increase it. Exceptions are,
for example, cases where unnecessary steps are considered. Generally we
associate the longest computation time with a shortest program for x. There
arises the question how much time can be saved by computing a given string
from a longer program.

1.1 Related Work

The minimum time to compute a string by a b-incompressible program was
first considered in [4] Definition 1. The minimum time was called the log-
ical depth at significance b of the string concerned. Definitions, variations,
discussion and early results can be found in the given reference. A more
formal treatment, as well as an intuitive approach, was given in the text-
book [10], Section 7.7. In [1] the notion of computational depth is defined as
Kd(x)−K(x). This would or would not equal the negative logarithm of the
expression Qd(x)/Q(x) in Definition 2 as follows. In [9] L.A. Levin proved,
in the so-called Coding Theorem

− logQ(x) = K(x) +O(1) (1)

(see also [10] Theorem 4.3.3). It remains to prove or disprove − logQd(x) =
Kd(x) up to a small additive term: a major open problem in Kolmogorov
complexity theory, see [10] Exercises 7.6.3 and 7.6.4. For Kolmogorov com-
plexity notions see Section 2.2, and for Q and Qd see (3).

1.2 Results

There are two versions of logical depth, Definition 2 and Definition 3. The
two versions are related. The version of Definition 3 almost implies that
of Definition 2 (Theorem 1), but vice versa there is possible uncertainty

(Theorem 2). We use Definition 3, that is, depth
(2)
b (x). There is an infinite

sequence of strings x1, x2, . . . with |xj+1| = |xj |+1 and an infinite sequence
of positive integers b1, b2, . . ., which satisfy the following. For every j > 0
the string xj is computed by two programs that can be compressed by at

2

most bj, bj + 1-bits and take least computation time among programs of

their lengths, respectively. Let these computation times be dj1, d
j
2 steps.

Then the function h(j) = dj1 − dj2 rises faster than any computable function
but not as fast as the Busy Beaver function, the first incomputable function
[11] (Theorem 3 and Corollary 1). For the associated shortest programs
x∗1, x

∗
2, . . . of x1, x2, . . . the function s∗(j) defined as the minimum number

of steps in the computation of x∗j to xj (j > 0). Then the function s∗

rises faster than any computable function but again not so fast as the Busy
Beaver function (Corollary 2) .

The rest of the paper is organized as follows. Section 2 introduces nota-
tion, definitions and basic results needed for the paper. Section 3 defines two
versions of logical depth and proves quantitative relations between them. In
Section 4, we prove the other results mentioned.

2 Preliminaries

We use string or program to mean a finite binary string. Strings are denoted
by the letters x, y and z. The length of a string x (the number of occurrences
of bits in it) is denoted by |x|, and the empty string by ǫ. Thus, |ǫ| = 0. The
notation “log” means the binary logarithm. Given two functions f and g, we
say that f ∈ O(g) if there is a constant c > 0, such that f(n) ≤ c · g(n), for
all but finitely many natural numbers n. Restricting the computation time
resource is indicated by a superscript giving the allowed number of steps,
usually using d.

2.1 Computability

A pair of nonnegative integers, such as (p, q) can be interpreted as the ra-
tional p/q. We assume the notion of a computable function with rational
arguments and values. A function f(x) with x rational is semicomputable
from below if it is defined by a rational-valued total computable function
φ(x, k) with x a rational number and k a nonnegative integer such that
φ(x, k + 1) ≥ φ(x, k) for every k and limk→∞ φ(x, k) = f(x). This means
that f (with possibly real values) can be computed in the limit from below
(see [10], p. 35). A function f is semicomputable from above if −f is semi-
computable from below. If a function is both semicomputable from below
and semicomputable from above then it is computable.

3

2.2 Kolmogorov Complexity

We refer the reader to the textbook [10] for details, notions, and history. We
use Turing machines with a read-only one-way input tape, one or more (a
finite number) of two-way work tapes at which the computation takes place,
and a one-way write-only output tape. All tapes are semi-infinite divided
into squares, and each square can contain a symbol. Initially, the input
tape is inscribed with a semi-infinite sequence of 0’s and 1’s. The other
tapes are empty (contain only blanks). At the start, all tape heads scan the
leftmost squares on their tapes. If the machine halts for a certain input then
the contents of the scanned segment of input tape is called the program or
input, and the contents of the output tape is called the output. The machine
thus described is a prefix Turing machine. Denote it by T . If T terminates
with program p then the output is T (p). The set P = {p : T (p) < ∞} is
prefix-free (no element of the set is a proper prefix of another element). By
the ubiquitous Kraft inequality [8] we have

∑

p∈P

2−|p| ≤ 1. (2)

We extend the prefix Turing machine with an extra read-only tape called
the auxiliary or conditional. Initially it contains the auxiliary information
consisting of a string y. We write T (p, y) and the set Py = {p : T (p, y) <∞}
is also prefix-free. The relation (2) holds also with Py substituted for P and
y is fixed auxiliary information. The unconditional case corresponds to the
case where the conditional is ǫ.

If T1, T2, . . . is a standard enumeration of prefix Turing machines, then
certain of those are called universal. Universal prefix Turing machines are
those that can simulate any other machine in the enumeration. Among
the universal prefix Turing machines we consider a special subclass called
optimal, see Definition 2.0.1 in [10]. To illustrate this concept let T1, T2, . . .
be a standard enumeration of prefix Turing machines, and let U1 be one of
them. If U1(i, pp) = Ti(p) for every index i and program p and outputs 0 for
inputs that are not of the form pp (doubling of p), then U1 is also universal.
However, U1 can not be used to define Kolmogorov complexity. For that we
need a machine U2 with U2(i, p) = Ti(p) for every i, p. The machine U2 is
called an optimal prefix Turing machine. Optimal prefix Turing machines
are a strict subclass of universal prefix Turing machines. The above example
illustrates the strictness. The term ‘optimal’ comes from the founding paper
[7].

It is possible that two different optimal prefix Turing machines have

4

different computation times for the same input-output pairs or they have
different sets of programs. To avoid these problems we fix a reference ma-
chine. Necessarily, the reference machine has a certain number of worktapes.
A well-known result of [6] states that n steps of a k-worktape prefix Tur-
ing machine can be simulated in O(n log n) steps of a two-worktape prefix
Turing machine (the constant hidden in the big-O notation depends only
on k). Thus, for such a simulating optimal Turing machine U we have
U(i, p) = Ti(p) for all i, p; if Ti(p) terminates in time t(n) then U(i, p)
terminates in time O(t(n) log t(n)). Altogether, we fix such a simulating op-
timal prefix Turing machine and call it the reference optimal prefix Turing
machine U .

Definition 1 Let U be the reference optimal prefix Turing machine, and
x, y be strings. The prefix Kolmogorov complexity K(x|y) of x given y is
defined by

K(x|y) = min{|q| : U(q, y) = x}.

(Earlier we wrote U(i, p) while we write here U(q, y). The two are reconciled
by writing i, p = i, r, y = q, y. That is, p = r, y for a program r, and q = i, r.)

The notation Ud(q, y) = x means that U(q, y) = x within d steps. The
d-time-bounded prefix Kolmogorov complexity Kd(x|y) of x given y is defined
by

Kd(x|y) = min{|q| : Ud(q, y) = x}.

The default value for the auxiliary input y for the program q, is the empty
string ǫ. To avoid overloaded notation we usually drop this argument in
case it is there. Let x be a string. Denote by x∗ the first shortest program
in standard enumeration such that U(x∗) = x. A string is c-incompressible
if a shortest program for it is at most c bits shorter than the string itself.

3 Different Versions of Logical Depth

The logical depth [4] comes in two versions. One version is based on QU (x),
the so-called a priori probability [10] and its time-bounded version Qd

U . Here
Ud(p) means that U(p) terminates in at most d steps. For convenience we
drop the subscript on QU and Qd

U and consider U as understood.

Q(x) =
∑

U(p)=x

2−|p|, Qd(x) =
∑

Ud(p)=x

2−|p|. (3)

5

Definition 2 Let x be a string, b a nonnegative integer. The logical depth,
version 1, of x at significance level ε = 2−b is

depth(1)ε (x) = min

{

d :
Qd(x)

Q(x)
≥ ε

}

.

Using a program that is longer than another program for output x can
shorten the computation time. The b-significant logical depth of an object x
can also be defined as the minimal time the reference optimal prefix Turing
machine needs to compute x from a program which is b-incompressible.

Definition 3 Let x be a string, b a nonnegative integer. The logical depth,
version 2, of x at significance level b, is:

depth
(2)
b (x) = min{d : |p| ≤ K(p) + b ∧ Ud(p) = x} .

Remark 1 The program x∗ is the first shortest program for x in enumer-
ation order. It may not be the fastest shortest program for x. Therefore,

if Ud(x∗) = x then d ≥ depth
(2)
0 (x). For b > 0 the value of depth

(2)
b (x) is

monotonic nonincreasing until

depth
(2)
|x|−K(x)+O(1)(x) = O(|x| log |x|),

where the O(1) term represents the length of a program to copy the literal
representation of x in O(|x| log |x|) steps. If x is random (|x| = n and

K(x) ≥ n) then for b = O(log n) we have depth
(2)
b (x) = O(n log n)—we

print a literal copy of x. These x’s, but not only these, are called shallow.
♦

For version (2) every program p of length at most K(p) + b must take
at least d steps to compute x. Version (1) states that Qd(x)/Q(x) ≥ 2−b

and Qd−1(x)/Q(x) < 2−b. Statements similar to Theorem 1 and Remark 2
were shown in Theorem 7.7.1 and Exercise 7.7.1 in [10] and derive from [4]
Lemma 3.

Theorem 1 If depth
(2)
b (x) = d then depth

(1)

2−β (x) = d with b + 1 < β ≤
b+K(b) +O(1).

Proof. The theorem states: if depth
(2)
b (x) = d then

1

2b+K(b)+O(1)
≤
Qd(x)

Q(x)
<

1

2b+1
.

6

(Right <) By way of contradiction Qd(x) ≥ 2−b−1Q(x). If for a nonnega-
tive constant c all programs computing x within d steps are c-compressible,
then the twice iterated reference optimal Turing machine (in its role as de-
compressor) computes x with probability 2cQd(x) ≥ 2c−b−1Q(x) from the
c-compressed versions. But Q(x) ≥ 2c−b−1Q(x) + 2−b−1Q(x). Therefore
c−b−1 < 0 that is c < b+1. This implies that there is a program computing

x within d steps that is (b+ 1)-incompressible. Then depth
(2)
b+1(x) = d con-

tradicting the assumption that depth
(2)
b (x) = d. Hence Qd(x) < 2−b−1Q(x).

(Left ≤) By way of contradiction Qd(x) < 2−BQ(x) with B = b+K(b) + c
and c is a large enough constant to derive the contradiction below. Consider
the following lower semicomputable semiprobability (the total probability is
less than 1): For every string x we enumerate all programs p that compute
x in order of halting (time), and assign to each halting p the probability
2−|p|+B until the total probability would pass Q(x) with the next halting p.
Since Q(x) is lower semicomputable we can postpone assigning probabilities.
But eventually or never for a program p the total probability may pass Q(x)
and this p and all subsequent halting p’s for x get assigned probability 0.
Therefore, the total probability assigned to all halting programs for x is less
than Q(x). Since by contradictory assumption Qd(x) < 2−BQ(x) we have
2BQd(x) =

∑

Ud(p)=x 2
−|p|+B < Q(x). Since Q(x) < 1 we have Qd(x) < 2−B

and therefore all programs that compute x in at most d steps are (B−O(1))-
compressible given B, and therefore (B −K(B)−O(1))-compressible.

Since depth
(2)
b (x) = d, there exists a b-incompressible program from

which x can be computed in d steps. Since K(b + K(b)) ≤ K(b,K(b)) +
O(1) ≤ K(b) + O(1) by an easy argument [10] and K(c) = O(log c) < c/2
we have that B −K(B)−O(1) = b+K(b) + c−K(b+K(b) + c)−O(1) ≥
b + K(b) + c − K(b + K(b)) − K(c) − O(1) > b. This gives the required
contradiction. Hence Qd(x) ≥ 2−BQ(x). �

Remark 2 We can replace K(b) by K(d) by changing the construction of
the semiprobability: knowing d we generate all programs that compute x
within d steps and let the semiprobabilities be proportional to 2−|p| and the
sum be at most Q(x). In this way K(b) in Theorem 1 is substituted by
min{K(b),K(d)}. ♦

Remark 3 Possibly Qd(x) = Qd+1(x). Moreover, while Qd(x)/Q(x) ≥ 2−b

for d least, possibly also Qd(x)/Q(x) ≥ 2−b+1. Both events happen, for
example, if p computes x in d steps but not in d − 1 steps, there is no
program for x halting in d + 1 steps, and |p| < b− 1 while Qd−1 < 2−b. In

7

the next theorem if we write depth
(2)

2−b(x) = d then d, b are least integers for
which this equality holds. ♦

Theorem 2 Let Ud(p) = Ud(q) = Ud(r) = x and Ud−1(p), Ud−1(r) = ∞
(the computation does not halt in d−1 steps) with K(p) least, |q| ≤ K(x)+b,
and ||r| − |q|| (the absolute value of the difference in lengths) is minimal. If

depth
(1)

2−b(x) = d then depth
(2)
β (x) = d with b −K(p) +K(x) − O(1) ≤ β ≤

b+ ||r| − |q|| −O(1).

Proof. (Left ≤) By assumption Qd(x)/Q(x) ≥ 2−b and by Remark 3
we have Qd(x)/Q(x) < 2−b+1. Since it is easy to see that 2−K(x) < Q(x),
we have Q(x) = 2−K(x)+c for a positive constant c by (1). Therefore

Qd(x) =
∑

Ud(p)=x

2−|p| < 2−(K(x)+b−1−c).

Hence every program p such that Ud(p) = x satisfies K(x) + b− 1− c < |p|.
Denote the set of these prograns byD. Let p ∈ D be such that Ud−1(p) = ∞.
Let (D − 1) be the set of such programs. Then (D − 1) ⊆ D. By the
convention in Remark 3 we have (D − 1) 6= ∅. Since K(x) ≤ K(p) + O(1)
for all p satisfying U(p) = x (the O(1) term is a nonnegative constant
independent of x and p) we have K(p)+ (b− fx(d)) < |p| for all p ∈ (D−1),

with fx(d) = K(p)−K(x)+O(1) > 0. If depth
(2)
β (x) = d then |p| ≤ K(p)+β

for p ∈ (D − 1). Hence β ≥ b− fx(d).
(Right ≤): By assumption Qd(x) ≥ 2−bQ(x). Let P be the set of pro-

grams p such that U(p) = x, the set Q consist of programs q ∈ P such that
|q| ≥ |p| + b with |q| least and p ∈ P , while the sets D, (D − 1) are defined
above. Then D,Q ⊆ P , (D − 1) ⊆ D, and

Qd(x) =
∑

Ud(p)=x

2−|p| ≥ 2−b
∑

U(p)=x

2−|p|

=
∑

p∈P

2−|p|−b ≥
∑

q∈Q

2−|q|.

The last sum is at most the first sum and the programs of Q constitute all
the programs in P that have length at least K(x) + b (a shortest program
in P trivially having length K(x) and therefore a shortest program in Q has
length K(x)+ b). Since D ⊆ P either D = Q or D

⋂

Q 6= ∅. It follows that
there exist programs q ∈ D at least as short as the shortest program of Q.
Since a shortest program in Q has length K(x)+ b therefore |q| ≤ K(x)+ b.

8

By the convention of Remark 3 (D − 1) 6= ∅. Choose r ∈ (D − 1) and
q ∈ D with |q| ≤ K(x) + b such that ||r| − |q|| is minimal. Additionally,
K(r) ≥ K(x) + O(1) (since U(r) = x and an O(1) term independent of r
and x). Therefore |r| ≤ K(r) + b+ gx(d) with gx(d) = ||r| − |q|| −O(1). It

follows that if depth
(2)
β (x) = d then β ≤ b+ gx(d). �

According to Theorems 1, 2 version 2 implies version 1 with the same
depth d and almost the same parameter b, while version 1 implies version 2
with the same depth d but more uncertainty in the parameter b. We choose
version 2 as our final definition of logical depth.

4 The graph of logical depth

Even slight changes of the significance level b can cause large changes in
logical depth.

Lemma 1 Every function φ such that φ(x) ≥ min{d : Ud(p) = x, |p| =
K(x)} is incomputable and rises faster than any computable function.

Proof. By [5] we haveK(K(x)|x) ≥ log n−2 log log n−O(1). (This was
improved to the optimal K(K(x)|x) ≥ log n − O(1) recently in [3].) Hence
there is no computable function φ(x) ≥ min{d : Ud(p) = x, |p| = K(x)}.
If there were, then we could run U for d steps on any program of length
n + O(log n). Among the programs that halt within d steps we select the
ones which output x. Subsequently, we select from this set a program of
minimum length. This is a shortest program for x of lengthK(x). Therefore,
the assumption that φ is computable implies that K(K(x)|x) = O(1) and
hence a contradiction. �

Definition 4 The Busy Beaver function BB : N → N is defined by

BB(n) = max{d : |p| ≤ n ∧ Ud(p) <∞}

The following result was mentioned informally in [4].

Lemma 2 The running time of a program p is at most BB(|p|). The running
time of a shortest program for a string x of length n is at most BB(n +
O(log n)).

Proof. The first statement of the lemma follows from Definition 4. For
the second statement we use the notion of a simple prefix-code called a self-
delimiting code. This is obtained by reserving one symbol, say 0, as a stop

9

sign and encoding a string x as 1x0. We can prefix an object with its length
and iterate this idea to obtain ever shorter codes: x̄ = 1|x|0x with length
|x̄| = 2|x|+ 1, and x′ = |x|x of length |x|+ 2||x||+ 1 = |x|+O(log |x|) bits.
From this code x is readily extracted. The second statement follows since
K(x) ≤ |x|+O(log |x|). �

Theorem 3 There is an infinite sequence of strings x1, x2, . . . with |xj+1| =
|xj | + 1 (j ≥ 1) and an infinite sequence b1, b2, . . . of integers such that

f(j) = depth
(2)
bj

(xj) is incomputable (faster than any computable function)

and g(j) = depth
(2)
bj+1(xj) is computable.

Proof. Let φ(x) ≥ depth
(2)
0 (x) be an incomputable function as in

Lemma 1. The function ψ defined by ψ(x) = depth
(2)
n−K(x)+O(logn)(x) =

O(n log n) for |x| = n is computable. Namely, a self-delimiting encoding
of x can be done in n + O(log n) bits. Let q be such an encoding with
q = 1||x||0|x|x (where ||x|| is the length of |x|). Let r be a self-delimiting
program of O(1) bits which prints the encoded string. Consider the pro-
gram rq. Since x can be compressed to length K(x), the running time

depth
(2)
n−K(x)+O(logn)(x) is at most the running time of rq which is O(n log n).

�

Corollary 1 Define the function h by h(j) = f(j) − g(j). Then h is a
gap in the logical depths of which the significance differs by 1. The function
h(j) rises faster than any computable function but not faster than BB(|xj|+
O(log |xj |) by Lemma 2.

Corollary 2 Let s∗(j) = depth
(2)
O(1)(xj) be the minimal time of a compu-

tation of a shortest program for xj, and f be the function in statement of
Theorem 3. Then f(j) ≤ s∗(j) ≤ BB(|xj|+O(log |xj|)).

Namely, the logical depth function depth
(2)
b (x) is monotonic nonincreasing in

the significance argument b for all strings x by its Definition 3. By Lemma 2
and Corollary 1 the Corollary 2 follows.

5 Conclusion

We resolve quantitative relations between the two versions of logical depth in
the literature. One of these relations was known by another proof, the other

10

relation is new. We select one version that approximately implies the other,
and study the the behavior of the resulting logical depth function associ-
ated with a string x of length n. This function is monotonic nonincreasing.
For argument 0 the logical depth is at least the minimum running time of
the computation from a shortest program for x. The function decreases to
O(n log n) for the argument |x| −K(x) +O(log |x|). We show that there is
an infinite sequence of strings such that maximum gap of logical depths re-
sulting from consecutive significance levels rises faster than any computable
function, that is, incomputably fast, but not more than the Busy Beaver
function. This shows that logical depth can increase tremendously for only
an incremental difference in significance. Moreover, the minimal computa-
tion times of associated shortest programs rises incomputably fast but not
so fast as the Busy Beaver function.

Acknowledgment

We thank Anonymus for comments and the new proof of Theorem 1.

References

[1] L. Antunes, L. Fortnow, D. van Melkebeek, and N. Vinodchandran.
Computational depth: concept and applications. Theoretical Computer
Science, 354(3):391–404, Elsevier Science Publishers Ltd., 2006.

[2] J.M. Barzdin, Complexity of programs to determine whether natural
numbers not greater than n belong to a recursively enumerable set, Sov.
Mat. Dokl., 9(1968), 1251–1254.

[3] B. Bauwens, A. Shen, Complexity of complexity and maximal plain ver-
sus prefix-free Kolmogorov complexity. J. Symb. Logic, 2013, To appear.

[4] C. Bennett. Logical depth and physical complexity, pages 227–257. Ox-
ford University Press, Inc., New York, NY, USA, 1988.

[5] P. Gács. On the symmetry of algorithmic information, Soviet Math.
Dokl., 15:1477–1480, 1974. Correction, Ibid., 15:1480, 1974.

[6] F.C. Hennie and R.E. Stearns. Two tape simulation of multitape Turing
machines. J. Assoc. Comput. Mach., 4:533–546, 1966.

[7] A.N. Kolmogorov. Three approaches to the quantitative definition of
information. Problems Inform. Transmission, 1(1):1–7, 1965.

11

[8] L.G. Kraft. A device for quantizing, grouping and coding amplitude mod-
ulated pulses. Master’s thesis, Dept. of Electrical Engineering, M.I.T.,
Cambridge, Mass., 1949.

[9] L. Levin. Laws of information conservation (non-growth) and aspects of
the foundation of probability theory. Problems Information Transmis-
sion, 10:206–210, Russian Academy of Sciences, 1974.

[10] M. Li and P.M.B. Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer-Verlag, 2008.

[11] T. Rado. On non-computable functions. Bell System Tech. J., XX:877–
884, 1962.

12

	1 Introduction
	1.1 Related Work
	1.2 Results

	2 Preliminaries
	2.1 Computability
	2.2 Kolmogorov Complexity

	3 Different Versions of Logical Depth
	4 The graph of logical depth
	5 Conclusion

