4,482 research outputs found

    Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia

    Get PDF
    AIM: To assess cell death pathways in response to magnetic hyperthermia. MATERIALS & METHODS: Human melanoma cells were loaded with citric acid-coated iron-oxide nanoparticles, and subjected to a time-varying magnetic field. Pathways were monitored in vitro in suspensions and in situ in monolayers using fluorophores to report on early-stage apoptosis and late-stage apoptosis and/or necrosis. RESULTS: Delayed-onset effects were observed, with a rate and extent proportional to the thermal-load-per-cell. At moderate loads, membranal internal-to-external lipid exchange preceded rupture and death by a few hours (the timeline varying cell-to-cell), without any measurable change in the local environment temperature. CONCLUSION: Our observations support the proposition that intracellular heating may be a viable, controllable and nonaggressive in vivo treatment for human pathological conditions

    Nickel-doped ceria nanoparticles : the effect of annealing on room temperature ferromagnetism

    Get PDF
    Nickel-doped cerium dioxide nanoparticles exhibit room temperature ferromagnetism due to high oxygen mobility within the doped CeO2 lattice. CeO2 is an excellent doping matrix as it can lose oxygen whilst retaining its structure. This leads to increased oxygen mobility within the fluorite CeO2 lattice, leading to the formation of Ce3+ and Ce4+ species and hence doped ceria shows a high propensity for numerous catalytic processes. Magnetic ceria are important in several applications from magnetic data storage devices to magnetically recoverable catalysts. We investigate the effect doping nickel into a CeO2 lattice has on the room temperature ferromagnetism in monodisperse cerium dioxide nanoparticles synthesised by the thermal decomposition of cerium(III) and nickel(II) oleate metal organic precursors before and after annealing. The composition of nanoparticles pre- and post-anneal were analysed using: TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), EDS (energy-dispersive X-ray spectroscopy) and XRD (X-ray diffraction). Optical and magnetic properties were also studied using UV/Visible spectroscopy and SQUID (superconducting interference device) magnetometry respectively

    Spin Stiffness of Stacked Triangular Antiferromagnets

    Full text link
    We study the spin stiffness of stacked triangular antiferromagnets using both heat bath and broad histogram Monte Carlo methods. Our results are consistent with a continuous transition belonging to the chiral universality class first proposed by Kawamura.Comment: 5 pages, 7 figure

    Evidence for the droplet/scaling picture of spin glasses

    Full text link
    We have studied the Parisi overlap distribution for the three dimensional Ising spin glass in the Migdal-Kadanoff approximation. For temperatures T around 0.7Tc and system sizes upto L=32, we found a P(q) as expected for the full Parisi replica symmetry breaking, just as was also observed in recent Monte Carlo simulations on a cubic lattice. However, for lower temperatures our data agree with predictions from the droplet or scaling picture. The failure to see droplet model behaviour in Monte Carlo simulations is due to the fact that all existing simulations have been done at temperatures too close to the transition temperature so that sytem sizes larger than the correlation length have not been achieved.Comment: 4 pages, 6 figure

    Heisenberg frustrated magnets: a nonperturbative approach

    Full text link
    Frustrated magnets are a notorious example where the usual perturbative methods are in conflict. Using a nonperturbative Wilson-like approach, we get a coherent picture of the physics of Heisenberg frustrated magnets everywhere between d=2d=2 and d=4d=4. We recover all known perturbative results in a single framework and find the transition to be weakly first order in d=3d=3. We compute effective exponents in good agreement with numerical and experimental data.Comment: 5 pages, Revtex, technical details available at http://www.lpthe.jussieu.fr/~tissie

    From one cell to the whole froth: a dynamical map

    Full text link
    We investigate two and three-dimensional shell-structured-inflatable froths, which can be constructed by a recursion procedure adding successive layers of cells around a germ cell. We prove that any froth can be reduced into a system of concentric shells. There is only a restricted set of local configurations for which the recursive inflation transformation is not applicable. These configurations are inclusions between successive layers and can be treated as vertices and edges decorations of a shell-structure-inflatable skeleton. The recursion procedure is described by a logistic map, which provides a natural classification into Euclidean, hyperbolic and elliptic froths. Froths tiling manifolds with different curvature can be classified simply by distinguishing between those with a bounded or unbounded number of elements per shell, without any a-priori knowledge on their curvature. A new result, associated with maximal orientational entropy, is obtained on topological properties of natural cellular systems. The topological characteristics of all experimentally known tetrahedrally close-packed structures are retrieved.Comment: 20 Pages Tex, 11 Postscript figures, 1 Postscript tabl

    The nature of the different zero-temperature phases in discrete two-dimensional spin glasses: Entropy, universality, chaos and cascades in the renormalization group flow

    Full text link
    The properties of discrete two-dimensional spin glasses depend strongly on the way the zero-temperature limit is taken. We discuss this phenomenon in the context of the Migdal-Kadanoff renormalization group. We see, in particular, how these properties are connected with the presence of a cascade of fixed points in the renormalization group flow. Of particular interest are two unstable fixed points that correspond to two different spin-glass phases at zero temperature. We discuss how these phenomena are related with the presence of entropy fluctuations and temperature chaos, and universality in this model.Comment: 14 pages, 5 figures, 2 table

    The influence of critical behavior on the spin glass phase

    Full text link
    We have argued in recent papers that Monte Carlo results for the equilibrium properties of the Edwards-Anderson spin glass in three dimensions, which had been interpreted earlier as providing evidence for replica symmetry breaking, can be explained quite simply within the droplet model once finite size effects and proximity to the critical point are taken into account. In this paper, we show that similar considerations are sufficient to explain the Monte Carlo data in four dimensions. In particular, we study the Parisi overlap and the link overlap for the four-dimensional Ising spin glass in the Migdal-Kadanoff approximation. Similar to what is seen in three dimensions, we find that temperatures well below those studied in Monte Carlo simulations have to be reached before the droplet model predictions become apparent. We also show that the double-peak structure of the link overlap distribution function is related to the difference between domain-wall excitations that cross the entire system and droplet excitations that are confined to a smaller region.Comment: 8 pages, 8 figure
    corecore