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Abstract: Nickel-doped cerium dioxide nanoparticles exhibit room temperature ferromagnetism 

due to high oxygen mobility within the doped CeO2 lattice. CeO2 is an excellent doping 

matrix as it can lose oxygen whilst retaining its structure. This leads to increased oxygen 

mobility within the fluorite CeO2 lattice, leading to the formation of Ce3+ and Ce4+ species 

and hence doped ceria shows a high propensity for numerous catalytic processes. Magnetic 

ceria are important in several applications from magnetic data storage devices to magnetically 

recoverable catalysts. We investigate the effect doping nickel into a CeO2 lattice has on the 

room temperature ferromagnetism in monodisperse cerium dioxide nanoparticles synthesised 

by the thermal decomposition of cerium(III) and nickel(II) oleate metal organic precursors 

before and after annealing. The composition of nanoparticles pre- and post-anneal were analysed 

using: TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), 

EDS (energy-dispersive X-ray spectroscopy) and XRD (X-ray diffraction). Optical and 

magnetic properties were also studied using UV/Visible spectroscopy and SQUID 

(superconducting interference device) magnetometry respectively. 
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1. Introduction 

Metal oxide nanoparticles have been an area of intense research and rapid development over the  

last twenty years, because of interest in utilizing their unique properties afforded to them by their small 

size. Metal oxide nanoparticles straddle the boundary between bulk materials and molecules and are a 

major driving force behind cutting-edge technological development [1–5]. Metal oxide nanoparticles 

have seen successful and widespread use in applications as diverse as: energy materials [6–9], 

thermochromics [10–12], magnetism [13–15], medicine [16–20], imaging [21–23], communications 

technology and data storage [24–26], catalysts for organic transformations [27] and superhydrophobic 

surfaces [15,28,29]. 

Cerium(IV) oxide (ceria) and metal-doped ceria nanoparticles have been developed for their role in 

catalysis [30–36]. One of the features that makes ceria attractive for catalysis is its ability to release/uptake 

oxygen from its lattice without losing its structural integrity [37]. Cerium(IV) oxide has the fluorite structure, 

in which the oxygen are packed along the same plane. This allows high oxygen mobility through the 

lattice as the number of oxygen vacancies to increase, with cerium atoms changing oxidation state from 

Ce4+ to Ce3+ increasing the propensity for redox chemistry. The ability for ceria to readily develop oxygen 

vacancies is key to its effectiveness as a dopant matrix [38]. 

Various transition and lanthanide metals have been used to dope ceria to enhance catalytic  

activity [31,39], performance in solid oxide fuel cells [40] and to develop magnetic properties [41,42]. 

Transition metals, particularly Mn [43], Fe [44], Co [45] and Ni [46] have all been doped into ceria to 

affect room temperature ferromagnetism and form dilute magnetic semiconductor oxides. It has been 

hypothesized by several groups that the room temperature ferromagnetism is due to the creation of 

oxygen vacancies in the CeO2 lattice. Oxygen vacancies which generate exchange interactions between 

unpaired electron spins and changes in surface chemical states are both postulated to affect room 

temperature ferromagnetism [47–49]. Oxygen vacancies also effect the band structure of the host CeO2, 

often dramatically affecting optical properties [50–52]. Studies involving the doping of non-magnetic 

elements into CeO2 such as Ca2+ [53] and Cr3+ [48] support this as they also demonstrate room 

temperature ferromagnetism. 

Thurber et al. demonstrated that room temperature ferromagnetism in Ni-doped CeO2 is not due to 

the formation/coagulation of ferromagnetic nickel within the material [42]. This was determined by the 

absence of nickel/nickel oxide diffraction peaks in X-ray diffraction pattern (and observations of shifting 

of the Curie temperature with different Ni doping levels showing doping throughout the material), and 

the fact that ferromagnetic properties did not increase with high amounts of nickel doping. Pure phase 

CeO2 and heavily Ni-doped samples did not show ferromagnetism, indicating that a random impurity 

could be eliminated as the cause of the ferromagnetism as the magnetic moment would be identical 

throughout the doped/pure phase samples. 

In this paper, we present the synthesis of nickel-doped cerium dioxide nanocrystals by the thermal 

decomposition of metal-oleate complexes in the presence of surfactants at high temperature; a route 

which has a high success rate in producing large quantities of highly monodisperse nanocrystals. The 

synthesis of Ni-doped CeO2 via this route has advantages over Fe, Co or Cr doped CeO2 due to the ease 

in which the solid precursor, nickel(II) oleate, can be handled and stored for long periods of time in 

comparison to viscid iron(III) oleate or air-sensitive cobalt(II) oleate. We investigated the effect of 
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annealing in air on the composition, crystallinity and room-temperature ferromagnetic properties using 

superconducting quantum interference device (SQUID) magnetometry. Nanoparticles were characterised 

using transmission electron microscopy (TEM) , X-ray photoelectron spectroscopy (XPS) , UV/Visible 

spectroscopy (UV/Vis), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). 

2. Results and Discussion 

The thermal decomposition of metal-oleate complexes has been shown to be an excellent method  

for the synthesis of large quantities of monodisperse metal oxide nanoparticles. The method involves the 

synthesis of the metal-oleate complex by a salt metathesis reaction between the metal chloride and 

sodium oleate, to give the metal-oleate and sodium chloride. Aside from the formation of sodium chloride, 

phase transfer in the two-phase solvent system (a mixture of water, ethanol and n-hexane) provides a 

major driving force. 

Once isolated, cerium(III) and nickel(II) oleate complexes are gold and bright green waxy solids 

respectively, and are easier to manipulate than their iron(III) or cobalt(II) counterparts due to their higher 

viscosity. Ni-doped ceria nanoparticles were synthesised by decomposing different ratios of cerium(III) 

and nickel(II) oleate in the presence of a surfactant (oleic acid) and a high boiling point solvent  

(1-octadecene) at 320 °C. The ratios for different nickel doping levels are given in Table 1. 

Table 1. Samples synthesized and used in this study with the amounts of starting reagents listed. 

Sample Ce[oleate]3 used/g, mmol Ni[oleate]2 used/g, mmol Sample Number 

CeO2 4, 4.06 0, 0 1 
NiO 0, 0 2.52, 4.06 2 

50% Ni-CeO2 2, 2.03 0.662, 2.03 3 
10% Ni-CeO2 3.59, 3.65 0.25, 0.406 4 
8% Ni-CeO2 3.62, 3.68 0.2, 0.325 5 
5% Ni-CeO2 3.86, 3.8 0.125, 0.203 6 
4% Ni-CeO2 3.84, 3.9 0.1, 0.162 7 
3% Ni-CeO2 3.88, 3.94 0.075, 0.122 8 
2% Ni-CeO2 3.92, 3.98 0.05, 0.08 9 
1% Ni-CeO2 4.02, 3.96 0.025, 0.0406 10 

Post-decomposition, nanoparticles were isolated as black sticky residues, several ethanol 

washes/centrifuge cycles were used to remove excess oleate-type species and 1-octadecene. Once 

washed, the nanoparticles were readily dispersible in organic solvents. At this stage, the samples were 

divided in two, with one half kept for analysis and the other half annealed at 450 °C in air for 12 h. The 

annealed powders were free flowing and different in color, with the most marked example being Sample 1 

changing from dark brown to yellow. The composition of nanoparticles pre- and post-anneal were 

characterised using: TEM, XPS, EDS and XRD. Their optical properties were also analysed using 

UV/Visible spectroscopy. 

TEM analysis demonstrated the effectiveness of the metal-oleate decomposition method for the 

synthesis of large quantities of monodisperse nanoparticles (Figure 1). 
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Figure 1. TEM images of pre- and post annealed samples. (a) Sample 1 (CeO2 nanoparticles); 

(b) Sample 1 (annealed); (c) Sample 2 (NiO nanoparticles); (d) Sample 2 (annealed) showing 

a d-spacing of 0.238 nm assigned to the <111> plane of NiO; (e) Sample 3 (50% Ni-CeO2); 

(f) Sample 7 (4% Ni-CeO2); (g) Sample 9 (2% Ni-CeO2, annealed) and (h) Sample 5 (8% 

Ni-CeO2, annealed) showing showing a d-spacing of 0.238 nm assigned to the <111> plane 

of CeO2. 

Sample 1 (CeO2) showed spherical nanoparticles of 1.83 ± 0.47 nm in diameter with very little shape 

anisotropy (on annealing 7.41 ± 2.1 nm). However, on nickel doping, shape anisotropy increased, as did 

overall sample polydispersity. Sample 5 gave a mean size of 2.63 nm with a standard deviation of 1.18 

nm (Figure 1). TEM and therefore EDS analysis was exacting due to the amount of carbon contamination 

on the TEM grids from the blanket coverage of oleic acid on nanoparticle surfaces/excess oleic acid in 

solution. Once annealed, high resolution images were taken, as was a more accurate EDS analysis with 

little carbon contamination (Figure 2). 

On annealing, nanoparticle size increased. Sample 5 increased from 2.63 ± 1.18 nm to 7.11 ± 3.37 nm. 

Annealing had a particularly marked effect on Sample 2 (NiO) which showed a very large increase in 

particle size (3.77 ± 0.90 nm to 21.49 ± 5.28 nm) and crystallinity, supported by peak narrowing in its 

XRD pattern (Figure 4j). 
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Characterisation by TEM was supported by compositional analysis by XPS and EDS spectroscopy. 

Results from composition analysis by quantitative XPS are fully summarised in Table 2. EDS spectra 

were effective in identifying the elements present in pre-annealed samples, although a quantitative 

comparison of compositions was achieved by analysing XPS spectra. 

EDS spectra showed the presence of Ni, Ce and O in the pre-annealed samples, but the high  

levels of surfactants present (oleic acid) introduced increased background interference. As evidenced  

in Figure 2a, c and d, this was solved by examining the annealed samples, as annealing entirely removed 

this background. 

 

Figure 2. Exemplar EDS spectra of non-annealed and annealed samples. (a) CeO2 

nanoparticles (annealed); (b) NiO nanoparticles (non-annealed), showing the high carbon 

content from the nanoparticle ligands; (c) Ni-CeO2 (8% doping, Sample 5, annealed) and  

(d) Ni-CeO2 (2% doping, Sample 9, annealed). 

XPS was used to determine the presence and composition of elements in the doped and undoped 

samples. Quantitative XPS results are listed in Table 2, with all samples showing the desired ratios of Ce to 

Ni in accordance with the amount of precursors used (Table 1). The survey scan revealed a degree of sodium 

in the samples and is a possible contaminant derived from sodium oleate used in the precursor synthesis. 

High resolution Ce 3d XPS spectra showed spectra typical of a Ce(IV) species, specifically for 

cerium(IV) oxide (CeO2) [54–56]. Ce4+ exhibits six peaks comprised of 3 pin-orbit doublets due to 

different Ce 4f occupancies post-excitation. The peak positions and doublet separation (Δ) for Sample 3 

are as follows: peak positions: 880.6, 886.5, 896.3, 899.2, 905.8 and 914.7 eV, Δ = 18.5 eV). 

One of the difficulties in analysing Ni-doped cerium dioxide is that the most intense signals for Ni 

and Ce (Ni 2p and Ce 3d) have a degree of overlap in Figure 3c. Figure 3d is the Ni 2p high resolution 

scan from Sample 2 (pure phase NiO) and it is clear that a substantial portion of the Ni 2p1/2 is masked 

by the Ce 3d3/2 peak. The full Ni2p scan is evident in Figure 3d, which is indicative of NiO (peak 

positions: 853.5, 855.2, 860.7, 872.0 and 879.3 eV, Δ = 18.5 eV) [54,57]. 
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Figure 3. (a) XPS survey scan of Sample 3 (50% Ni-CeO2) showing elements present;  

(b) Fitted Ce 3d high resolution XPS spectrum showing the 3 doublets that are indicative of 

Ce(IV) and indeed CeO2; (c) Ni 2p region of Sample 3, showing the overlapping Ce 3d 

region which masks the Ni 2p1/2 region; (d) is a high resolution scan of the Ni 2p region in 

Sample 2 (pure phase NiO). 

Table 2. Nanoparticle compositional analysis by quantitative XPS spectroscopy. 

Sample 
Ce Composition by 

XPS/at.% 
O Composition by 

XPS/at.% 
Ni Composition by 

XPS/at.% 

1 37.79 62.21 – 
2 – 49.52 50.48 
3 22.02 54.57 23.40 
4 36.51 59.64 3.86 
5 32.72 64.80 2.48 
6 34.26 63.88 1.86 
7 32.92 65.81 1.27 
8 36.98 62.13 0.90 
9 37.95 61.47 0.58 
10 33.43 66.32 0.25 

XRD patterns were easily obtained on powder samples post-annealing and demonstrated the propensity 

of the ceria lattice to receive metal ion dopants without significant structural re-arrangement or collapse 

(Figure 4). All patterns (bar NiO, Sample 2) were shown to exhibit the halite structure of cerium(IV) 

oxide (COD: 4343161) [50,58], with Sample 2 showing the cubic structure of NiO (COD: 1010093). 
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Figure 4. Powder X-ray diffraction patterns of: (a) Sample 3 (50% Ni-CeO2, annealed);  

(b) Sample 4 (10% Ni-CeO2, annealed); (c) Sample 5 (8% Ni-CeO2, annealed); (d) Sample 6 

(5% Ni-CeO2, annealed); (e) Sample 7 (4% Ni-CeO2, annealed); (f) Sample 8 (3% Ni-CeO2, 

annealed); (g) Sample 9 (2% Ni-CeO2, annealed); (h) Sample 10 (1% Ni-CeO2, annealed); 

(i) Sample 1 (CeO2, annealed) and (j) Sample 2 (NiO, annealed). Circles represent the 

diffraction peaks from the standard pattern of CeO2 (COD: 4343161), squares standard data 

from NiO (COD: 1010093) and triangles standard data from Ni metal (COD: 1512526). 

When nickel doping was increased beyond 8%, Figure 3b,c shows the emergence of the nickel oxide 

pattern. In Sample 3 (1:1 molar ratio of cerium and nickel precursors), it is evident that a mixed phase 

system exists, supported by TEM micrographs which show two distinct nanoparticle populations. On 

annealing, Sample 2 (NiO) exhibited narrowed peaks compared to those of the non-annealed sample 

(Figure S1) consistent with nanoparticle sintering and increased crystallised size seen by TEM 

micrographs (Figure 2c,d). The diffraction pattern for Sample 2 also revealed that even after annealing, 

the NiO was not phase-pure; indeed there was a degree of Ni present as shown by reflections at 44.7° 

and 51.7° assigned as the <111> and <200> of Ni metal (COD: 1512526). However, this was not seen 

by high resolution Ni2p XPS spectra of Sample 2, which showed solely NiO. This is indirect evidence 

of a Ni/NiO core/shell type system as XPS is surface sensitive, whereas XRD analyses the entire sample. 

As expected, the presence of Ni metal decreases when comparing the non-annealed and annealed 

states in sample 2 (Figure S1).XRD patterns were further analysed for unit cell parameter and unit cell 
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volume (Table S1) using QualX software with standard data taken from the Crystallography Open 

Database (COD). However, there was little correlation between the cell parameter values or the unit cell 

volumes with nickel doping. Reports have suggested that cell parameter decreases with nickel doping 

due to the smaller size of Ce3+ and Ce4+ compared to Ni, Ni+ or Ni2+ [42], or that nanoscale effects 

overtake this, and an expansion in unit cell parameters is reported with decreasing nanoparticle size due 

to Ce4+ replacement with smaller Ce3+ [59–61]. 

One of the marked effects of introducing oxygen vacancies into CeO2 by transition metal doping is 

the alteration of the band structure. This can be seen using UV/visible spectroscopy, specifically diffuse 

reflectance spectroscopy on powder samples. A sample of the results are summarised in Figure 5.  

Figure 5 shows the change in diffuse reflectance optical spectra with increased nickel doping.  

Using these data, it is possible to determine the optical band-gap of the samples after applying the 

Kubelka-Munk function (Equation (1)): 

ሺܴሻܨ ൌ ൬
ሺ1 െ ܴሻ
2ܴ

൰
ଶ

 (1)

The band gap of Sample 1 (pure CeO2) was found to be 3.81 eV, in agreement with the literature 

value of 3.78 eV for cerium(IV) oxide [62]. With increasing nickel doping, the band gap increases to 

3.7, 3.5, 3.81 eV and 3.93 eV for 1%, 2%, 3% and 8% doping respectively. This is consistent with reports 

that show that ceria nanoparticles of decreasing size show an increase in bad gap energy [59]. TEM image 

analysis post annealing showed that particle size decreased slightly on Ni-doping, with the exception  

of sample 2 (pure NiO) which was dramatically different to any of the samples containing cerium. 

Thurber et al. reported changes in band gap energy of nickel doped ceria systems as a combination of 

particle size effects and structural changes brought about by interstitial Ni incorporation, even at the 1% 

level [42]. The authors also show a decrease in the band gap up to x ≤ 0.04 (Ce1−xNixO2) but an increase 

thereafter, and correlated their findings with lattice strain induced by nickel doping. Our samples did 

exhibit this trend, but only up to x ≤ 0.02 after which band gap energy values increased, possibly due to 

smaller particle sizes obtained from our syntheses. 

 

Figure 5. Diffuse-reflectance spectra of nickel-doped CeO2 samples, with reflectance 

intensity decreasing markedly with increased nickel doping. “QS” is the reflectance spectrum 

of blank quartz slides. 
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Along with changes in the optical properties common in materials of interest in spintronics, the 

magnetic properties of the Ni-doped CeO2 samples were investigated using SQUID magnetometry 

(Figure 6). Both pre- and post-annealed NiO samples (Sample 2) have a coercive field that increase from 

14 Oe to 70 Oe post-annealing. The annealing process also impacts the saturation magnetisation with a 

17% increase in saturation post-annealing, commensurate with the increase in crystallinity and particle size. 

 

Figure 6. Magnetic hysteresis curves at 300 K for: (a) NiO annealed and non-annealed 

“slurry” samples (Sample 2) and (b) 5% Ni-CeO2 (Sample 6). Magnetic saturation values 

were calculated by removing the high field linear component (χ.H) from the data. 

It is noteworthy that the non-annealed CeO2 sample (Sample 1) showed no magnetism at room 

temperature, with the annealed sample giving a weak magnetic moment of 1.9 × 10−3 emu/g. Sample 6, 

5% Ni-CeO2, showed weak ferromagnetic behaviour, however there was an absence  

of a coercive field in both annealed and non-annealed samples, presumably due to the small size of  

the nanoparticles, and the absence of ripening in the doped samples compared with NiO (Sample 2). 

Curiously there is however a decrease in the magnetic saturation post-annealing, which is contrary to 

expectations, however previous studies [42] noted a linear increase of ferromagnetic moment in dopant 

concentrations below 4%, with a dramatic decrease thereafter. Therefore, annealing in the case of Sample 6 

could be detrimental to the overall moment due to increased crystallinity of the annealed product. 

3. Experimental Section 

3.1. Materials 

Cerium(III) chloride (purum p.a., ≥ 98.0%), nickel(II) chloride hexahydrate (ReagentPlus), 1-octadecene 

(90%) oleic acid (90% technical grade) and sodium oleate (≥82% fatty acids) were purchased from 

Sigma-Aldrich Ltd., UK Ethanol (≥99.8% (GC)) and n-hexane (Laboratory Reagent, ≥95%) were 

purchased from VWR limited, UK. UHQ deionized water with a resistivity of not less than  

18.2 MΩ·cm−1 (Millipore, UK) was used for aqueous solutions. 
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3.2. Methods 

Metal-oleate syntheses: Nickel(II) and cerium(III) oleate complexes were synthesized according to a 

modified procedure by Park et al. [63]. Briefly, nickel(II) chloride hexahydrate (7.13 g, 30 mmol) was 

dissolved in deionized water (60 mL) and added to a 250 mL three-necked flask fitted with a condenser 

and charged with sodium oleate (18.23 g, 60 mmol), n-hexane (105 mL), deionized water (45 mL) and 

ethanol (60 mL). The mixture was refluxed under stirring (~70 °C) for 4 h, giving a dark green suspension 

in hexane. On cooling, the organic (hexane) layer was isolated and washed with deionized water  

(2 × 100 mL) and evaporated in vacuo to give solid green nickel(II) oleate. 

Cerium(III) oleate was synthesized using the method above, with cerium(III) chloride heptahydrate 

(11.2 g, 30 mmol) and 3 equivalents of sodium oleate (27.4 g, 90 mmol) used to give cerium(III) oleate 

as a waxy solid. 

Nanoparticle synthesis: Cerium(III) oleate, nickel(II) oleate or a mixture of both (see Table 1) was 

added to a three-necked 250 mL flask containing oleic acid (0.64 mL, 2 mmol) and 1-octadecene (30 mL). 

The mixture was then heated to 320 °C at a constant rate of 3.3 °C·min−1 under stirring and kept at  

320 °C for 1 h, developing a vigorous reflux. On cooling, the black suspension was subjected to several 

ethanol washings/centrifuge cycles (10 min at 3000× g) until a black solid was isolated. 

Half the product was then placed into a ceramic crucible before being annealed in air for 12 h at  

450 °C at a heating rate of 10 °C·min−1, yielding free flowing powders free of ligands. 

The remainder of the product was re-dispersed in n-hexane (ca. 20 mL) giving a colloidally stable 

black dispersion. 

3.3. Instrumentation 

TEM images were recorded using a FEI Tecnai G2 20 with a LaB6 source at an acceleration voltage 

of 200 kV. EDS spectra were taken with an Oxford XMax 80 TLE detector running AZTEC software. 

UV-Vis absorption spectra were recorded using a Shimadzu UV-1800 UV/Vis spectrometer (Japan) in 

the wavelength range 200–800 nm. X-ray photoelectron spectra (XPS) were recorded on a Kratos Axis 

Supra instrument (Kratos Analytical, Manchester, UK) using a monochromated Al Kα source. All 

spectra were recorded using a charge neutralizer to limit differential charging and subsequently calibrated 

to the main CxHy carbon peak at a binding energy of 284.8 eV. Survey scans were recorded at a pass 

energy of 160 eV and high resolution data at a pass energy of 20 eV. Data was fitted using CASA  

XPS with Shirley backgrounds. XRD diffraction patterns were acquired using a Bruker D8 Advance 

diffractometer (Germany), using a Cu Kα source (λ = 0.154018 nm) with a Gobel mirror optic and Soller 

slits on the detector side. Scans were acquired at a grazing incidence of 3° over a 2θ range of 20°–80° 

with 0.05° steps and 3 s per step. Samples for magnetometery were prepared in polycarbonate sample 

holders and weighed using a 6 d.p. microbalance before mounting them in a rigid brass tube specifically 

designed for SQUID magnetometry measurements. A Quantum Design MPMS SQUID-VSM (San 

Diego, CA, USA) was used to measure M vs. H curves at room temperature (300 K) with a field range 

of ±7T. 
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4. Conclusions 

Ni-CeO2 nanoparticles were successfully synthesised using the thermal decomposition of metal-oleate 

precursors. A portion of the obtained nanoparticles were annealed at 450 °C leading to some sintering 

(in the case of NiO) and increased crystallinity. Nanoparticle structure and composition were characterised 

using: TEM, XPS, EDS and XRD, giving expected levels of nickel doping and structural deviation. 

Optical properties were analysed using reflectance spectroscopy, with even low levels of Ni doping  

(ca. 1%) having a marked effect on overall reflectance. SQUID magnetometry was used to compare 

annealed and non-annealed samples, with an increase in ferromagnetic moment observed on annealing 

of the pure NiO sample and indeed the pure CeO2 sample. The 5% Ni-CeO2 sample demonstrated a 

decrease on annealing, perhaps due to the drop-off of ferromagnetism in Ni-CeO2 samples with nickel 

doping levels of above 4%. 

Magnetic ceria are important in several applications from magnetic data storage devices to magnetically 

recoverable catalysts, and weak room temperature ferromagnetism induced by transition metal doping 

is a facile method to realise the aforementioned applications at the nanoscale. 
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