6 research outputs found

    Phylogenetic Complexity of Morphologically Identified Anopheles squamosus in Southern Zambia

    No full text
    Despite dramatic reductions in malaria cases in the catchment area of Macha Hospital, Choma District, Southern Province in Zambia, prevalence has remained near 1–2% by RDT for the past several years. To investigate residual malaria transmission in the area, this study focuses on the relative abundance, foraging behavior, and phylogenetic relationships of Anopheles squamosus specimens. In 2011, higher than expected rates of anthropophily were observed among “zoophilic” An. squamosus, a species that had sporadically been found to contain Plasmodium falciparum sporozoites. The importance of An. squamosus in the region was reaffirmed in 2016 when P. falciparum sporozoites were detected in numerous An. squamosus specimens. This study analyzed Centers for Disease Control (CDC) light trap collections of adult mosquitoes from two collection schemes: one performed as part of a reactive-test-and-treat program and the second performed along a geographical transect. Morphological identification, molecular verification of anopheline species, and blood meal source were determined on individual samples. Data from these collections supported earlier studies demonstrating An. squamosus to be primarily exophagic and zoophilic, allowing them to evade current control measures. The phylogenetic relationships generated from the specimens in this study illustrate the existence of well supported clade structure among An. squamosus specimens, which further emphasizes the importance of molecular identification of vectors. The primarily exophagic behavior of An. squamosus in these collections also highlights that indoor vector control strategies will not be sufficient for elimination of malaria in southern Zambia

    Individual and Household Level Risk Factors Associated with Malaria in Nchelenge District, a Region with Perennial Transmission: A Serial Cross-Sectional Study from 2012 to 2015.

    No full text
    BACKGROUND:The scale-up of malaria control interventions has resulted in substantial declines in transmission in some but not all regions of sub-Saharan Africa. Understanding factors associated with persistent malaria transmission despite control efforts may guide targeted interventions to high-risk areas and populations. METHODS:Household malaria surveys were conducted in Nchelenge District, Luapula Province, in northern Zambia. Structures that appeared to be households were enumerated from a high-resolution satellite image and randomly sampled for enrollment. Households were enrolled into cross-sectional (single visit) or longitudinal (visits every other month) cohorts but analyses were restricted to cross-sectional visits and the first visit to longitudinal households. During study visits, a questionnaire was administered to adults and caretakers of children and a blood sample was collected for a malaria rapid diagnostic test (RDT) from all household residents. Characteristics associated with RDT positivity were analyzed using multi-level models. RESULTS:A total of 2,486 individuals residing within 742 households were enrolled between April 2012 and July 2015. Over this period, 51% of participants were RDT positive. Forty-three percent of all RDT positive individuals were between the ages of 5 and 17 years although this age group comprised only 30% of study participants. In a multivariable model, the odds being RDT positive were highest in 5-17 year olds and did not vary by season. Children 5-17 years of age had 8.83 higher odds of being RDT positive compared with those >18 years of age (95% CI: 6.13, 12.71); there was an interaction between age and report of symptoms, with an almost 50% increased odds of report of symptoms with decreasing age category (OR = 1.49; 95% CI 1.11, 2.00). CONCLUSIONS:Children and adolescents between the ages of 5 and 17 were at the highest risk of malaria infection throughout the year. School-based programs may be effective at targeting this high-risk group

    Distinct parasite populations infect individuals identified through passive and active case detection in a region of declining malaria transmission in southern Zambia

    No full text
    Abstract Background Substantial reductions in the burden of malaria have been documented in parts of sub-Saharan Africa, with elimination strategies and goals being formulated in some regions. Within this context, understanding the epidemiology of low-level malaria transmission is crucial to achieving and sustaining elimination. A 24 single-nucleotide-polymorphism Plasmodium falciparum molecular barcode was used to characterize parasite populations from infected individuals identified through passive and active case detection in an area approaching malaria elimination in southern Zambia. Methods The study was conducted in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia, where the parasite prevalence declined over the past decade, from 9.2% in 2008 to less than 1% in 2013. Parasite haplotypes from actively detected, P. falciparum-infected participants enrolled in a serial cross-sectional, community-based cohort study from 2008 to 2013 and from passively detected, P. falciparum-infected individuals enrolled at five rural health centres from 2012 to 2015 were compared. Changes in P. falciparum genetic relatedness, diversity and complexity were analysed as malaria transmission declined. Results Actively detected cases identified in the community were most commonly rapid diagnostic test negative, asymptomatic and had submicroscopic parasitaemia. Phylogenetic reconstruction using concatenated 24 SNP barcode revealed a separation of parasite haplotypes from passively and actively detected infections, consistent with two genetically distinct parasite populations. For passively detected infections identified at health centres, the proportion of detectable polyclonal infections was consistently low in all seasons, in contrast with actively detected infections in which the proportion of polyclonal infections was high. The mean genetic divergence for passively detected infections was 34.5% for the 2012–2013 transmission season, 37.8% for the 2013–2014 season, and 30.8% for the 2014–2015 season. The mean genetic divergence for actively detected infections was 22.3% in the 2008 season and 29.0% in the 2008–2009 season and 9.9% across the 2012–2014 seasons. Conclusions Distinct parasite populations were identified among infected individuals identified through active and passive surveillance, suggesting that infected individuals detected through active surveillance may not have contributed substantially to ongoing transmission. As parasite prevalence and diversity within these individuals declined, resource-intensive efforts to identify the chronically infected reservoir may not be necessary to eliminate malaria in this setting

    Reduction in Malaria Incidence following Indoor Residual Spraying with Actellic 300 CS in a Setting with Pyrethroid Resistance: Mutasa District, Zimbabwe

    No full text
    <div><p>Background</p><p>More than half of malaria cases in Zimbabwe are concentrated in Manicaland Province, where seasonal malaria epidemics occur despite intensified control strategies. Recently, high levels of pyrethroid and carbamate resistance were detected in <i>Anopheles funestus</i>, the major malaria vector in eastern Zimbabwe. In response, a single round of indoor residual spraying (IRS) using pirimiphos-methyl (an organophosphate) was implemented in four high burden districts of Manicaland Province from November 1, 2014 to December 19, 2014. The objective of this study was to evaluate the effect of this programmatic switch in insecticides on malaria morbidity reported from health care facilities in Mutasa District, one of the worst affected districts in Manicaland Province.</p><p>Methods</p><p>The number of weekly malaria cases for each health facility 24 months prior to the 2014 IRS campaign and in the subsequent high transmission season were obtained from passive case surveillance. Environmental variables were extracted from remote-sensing data sources and linked to each health care facility. Negative binomial regression was used to model the weekly number of malaria cases, adjusted for seasonality and environmental variables.</p><p>Results</p><p>From December 2012 to May 2015, 124,206 malaria cases were reported from 42 health care facilities in Mutasa District. Based on a higher burden of malaria, 20 out of 31 municipal wards were sprayed in the district. Overall, 87.3% of target structures were sprayed and 92.1% of the target population protected. During the 6 months after the 2014 IRS campaign, a period when transmission would have otherwise peaked, the incidence of malaria was 38% lower than the preceding 24 months at health facilities in the sprayed wards.</p><p>Conclusions</p><p>Pirimiphos-methyl had a measurable impact on malaria incidence and is an effective insecticide for the control of <i>An</i>. <i>funestus</i> in eastern Zimbabwe.</p></div

    Malaria knowledge and bed net use in three transmission settings in southern Africa

    No full text
    Abstract Background Insecticide-treated nets (ITNs) reduce malaria morbidity and mortality in endemic areas. Despite increasing availability, the use of ITNs remains limited in some settings. Poor malaria knowledge is a barrier to the widespread use of ITNs. The goal of this study was to assess the levels of malaria knowledge and evaluate factors associated with bed net use among individuals residing in three regions of southern Africa with different levels of malaria transmission and control. Methods A cross-sectional study was conducted on a sample of 7535 residents recruited from 2066 households in Mutasa District, Zimbabwe (seasonal malaria transmission), Choma District, Zambia (low transmission) and Nchelenge District, Zambia (high transmission), between March 2012 and March 2017. A standardized questionnaire was used to collect data on demographics, malaria-related knowledge and use of preventive measures. Multivariate logistic regression analyses were used to assess determinants of bed net use. Results Most of the 3836 adult participants correctly linked mosquito bites to malaria (85.0%), mentioned at least one malaria symptom (95.5%) and knew of the benefit of sleeping under an ITN. Bed net ownership and use were highest in Choma and Nchelenge Districts and lowest in Mutasa District. In multivariate analyses, knowledge of ITNs was associated with a 30–40% increased likelihood of bed net use after adjusting for potential confounders across all sites. Other factors significantly associated with bed net use were age, household size and socioeconomic status, although the direction, strength and size of association varied by study site. Importantly, participants aged 5–14 years had reduced odds of sleeping under a bed net compared to children younger than 5 years. Conclusion Relevant knowledge of ITNs translated into the expected preventive behaviour of sleeping under a bed net, underscoring the need for continued health messaging on malaria prevention. The implementation and delivery of malaria control and elimination interventions needs to consider socioeconomic equity gaps, and target school-age children to ensure access to and improve utilization of ITNs
    corecore