13 research outputs found

    Realization of vertically aligned, ultra-high aspect ratio InAsSb nanowires on graphite

    Get PDF
    The monolithic integration of InAs1–xSbx semiconductor nanowires on graphitic substrates holds enormous promise for cost-effective, high-performance, and flexible devices in optoelectronics and high-speed electronics. However, the growth of InAs1–xSbx nanowires with high aspect ratio essential for device applications is extremely challenging due to Sb-induced suppression of axial growth and enhancement in radial growth. We report the realization of high quality, vertically aligned, nontapered and ultrahigh aspect ratio InAs1–xSbx nanowires with Sb composition (xSb(%)) up to ∼12% grown by indium-droplet assisted molecular beam epitaxy on graphite substrate. Low temperature photoluminescence measurements show that the InAs1–xSbx nanowires exhibit bright band-to-band related emission with a distinct redshift as a function of Sb composition providing further confirmation of successful Sb incorporation in as-grown nanowires. This study reveals that the graphite substrate is a more favorable platform for InAs1–xSbx nanowires that could lead to hybrid heterostructures possessing potential device applications in optoelectronics

    InAs1- xPx nanowires grown by catalyst-free molecular-beam epitaxy

    No full text
    We report on the self-catalysed growth of vertical InAs1-xPx nanowires on Si(111) substrates by solid-source molecular-beam epitaxy. High-resolution transmission electron microscopy revealed the mixed wurtzite and zincblende structure of the nanowires. Energy dispersive x-ray spectroscopy and x-ray diffraction measurements were used to study the phosphorus content x in the InAs1-xPx nanowires, which was shown to be in the range 0-10 %. The dependence of phosphorus incorporation in the nanowires on the phosphorus flux in the growth chamber was investigated. The incorporation rate coefficients of As and P in InAs1xPx nanowires were found to be in the ratio 10 ± 5 to 1. © 2013 IOP Publishing Ltd
    corecore