123 research outputs found

    Community Detection as an Inference Problem

    Full text link
    We express community detection as an inference problem of determining the most likely arrangement of communities. We then apply belief propagation and mean-field theory to this problem, and show that this leads to fast, accurate algorithms for community detection.Comment: 4 pages, 2 figure

    Typical Performance of Gallager-type Error-Correcting Codes

    Get PDF
    The performance of Gallager's error-correcting code is investigated via methods of statistical physics. In this approach, the transmitted codeword comprises products of the original message bits selected by two randomly-constructed sparse matrices; the number of non-zero row/column elements in these matrices constitutes a family of codes. We show that Shannon's channel capacity is saturated for many of the codes while slightly lower performance is obtained for others which may be of higher practical relevance. Decoding aspects are considered by employing the TAP approach which is identical to the commonly used belief-propagation-based decoding.Comment: 6 pages, latex, 1 figur

    Information-aware access network selection

    Get PDF
    Mobile devices are increasingly presented with multiple connectivity options, including WiFi hotspots, micro-/macro-cells or even other devices in device-to-device (D2D) communications. By and large, connectivity management for mobile devices has primarily focused on contention, congestion and wireless medium conditions. In this paper, we assess the role of information-centrism in mobile device connectivity management. Motivated by the increasing availability of content and services in in-network caches and micro-data centres, we design an access network selection scheme that takes into account information availability within each connectivity option. Our simulations show that information-awareness results in a significant increase of cache hit ratios by up to 115% in certain scenarios

    On the feasibility of a user-operated mobile content distribution network

    Get PDF
    The vast majority of mobile data transfers today follow the traditional client-server model. Although in the fixed network P2P approaches have been exploited and shown to be very efficient, in the mobile domain there has been limited attempt to leverage on P2P (D2D) for large-scale content distribution (i.e., not DTN-like, point-to-point message transfers). In this paper, we explore the potential of a user-operated, smartphone-centric content distribution model for smartphone applications. In particular, we assume source nodes that are updated directly from the content provider (e.g., BBC, CNN), whenever updates are available; destination nodes are then directly updated by source nodes in a D2D manner. We leverage on sophisticated information-aware and application-centric connectivity techniques to distribute content between mobile devices in densely-populated urban environments. Our target is to investigate the feasibility of an opportunistic content distribution network in an attempt to achieve widespread distribution of heavy content (e.g., video files) to the majority of the destination nodes. We propose ubiCDN as a ubiquitous, user-operated and distributed CDN for mobile applications

    Typical performance of low-density parity-check codes over general symmetric channels

    Get PDF
    Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Theoretical framework for dealing with general symmetric channels is provided, based on which Gallager and MacKay-Neal codes are studied as examples of LDPC codes. It has been shown that the basic properties of these codes known for particular channels, including the property to potentially saturate Shannon's limit, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte

    Weak first order transition in the three-dimensional site-diluted Ising antiferromagnet in a magnetic field

    Get PDF
    We perform intensive numerical simulations of the three-dimensional site-diluted Ising antiferromagnet in a magnetic field at high values of the external applied field. Even if data for small lattice sizes are compatible with second-order criticality, the critical behavior of the system shows a crossover from second-order to first-order behavior for large system sizes, where signals of latent heat appear. We propose "apparent" critical exponents for the dependence of some observables with the lattice size for a generic (disordered) first-order phase transition.Comment: Final version, accepted for publicatio

    Naive mean field approximation for image restoration

    Full text link
    We attempt image restoration in the framework of the Baysian inference. Recently, it has been shown that under a certain criterion the MAP (Maximum A Posterior) estimate, which corresponds to the minimization of energy, can be outperformed by the MPM (Maximizer of the Posterior Marginals) estimate, which is equivalent to a finite-temperature decoding method. Since a lot of computational time is needed for the MPM estimate to calculate the thermal averages, the mean field method, which is a deterministic algorithm, is often utilized to avoid this difficulty. We present a statistical-mechanical analysis of naive mean field approximation in the framework of image restoration. We compare our theoretical results with those of computer simulation, and investigate the potential of naive mean field approximation.Comment: 9 pages, 11 figure

    Cryptographical Properties of Ising Spin Systems

    Full text link
    The relation between Ising spin systems and public-key cryptography is investigated using methods of statistical physics. The insight gained from the analysis is used for devising a matrix-based cryptosystem whereby the ciphertext comprises products of the original message bits; these are selected by employing two predetermined randomly-constructed sparse matrices. The ciphertext is decrypted using methods of belief-propagation. The analyzed properties of the suggested cryptosystem show robustness against various attacks and competitive performance to modern cyptographical methods.Comment: 4 pages, 2 figure

    Weighted Mean Field Theory for the Random Field Ising Model

    Full text link
    We consider the mean field theory of the Random Field Ising Model obtained by weighing the many solutions of the mean field equations with Boltzmann-like factors. These solutions are found numerically in three dimensions and we observe critical behavior arising from the weighted sum. The resulting exponents are calculated.Comment: 15 pages of tex using harvmac. 8 postscript figures (fig3.ps is large) in a separate .uu fil

    The Statistical Physics of Regular Low-Density Parity-Check Error-Correcting Codes

    Full text link
    A variation of Gallager error-correcting codes is investigated using statistical mechanics. In codes of this type, a given message is encoded into a codeword which comprises Boolean sums of message bits selected by two randomly constructed sparse matrices. The similarity of these codes to Ising spin systems with random interaction makes it possible to assess their typical performance by analytical methods developed in the study of disordered systems. The typical case solutions obtained via the replica method are consistent with those obtained in simulations using belief propagation (BP) decoding. We discuss the practical implications of the results obtained and suggest a computationally efficient construction for one of the more practical configurations.Comment: 35 pages, 4 figure
    corecore