16 research outputs found

    Associations Between Hereditary Breast Cancer Susceptibility Gene Alterations and Aggressive Tumor Phenotype in Women Diagnosed with Breast Cancer

    Get PDF
    The first chapter of this dissertation serves as an overview of the background and significance of this study, the associations between hereditary breast cancer susceptibility gene alterations (GA) and aggressive tumor phenotypes in women with breast cancer. The body of work in all chapters focuses on the topics of breast cancer genomics, inflammatory breast cancer, the application of Protection Motivation Theory to guide prevention strategies for women with breast cancer diagnosis and positive genetic alteration, and the associations between hereditary breast cancer susceptibility GAs and aggressive tumor phenotype. The second chapter is a review of literature to discuss breast cancer genomics, specifically two genes, Ataxia Telangiectasia Mutated (ATM) and the Partner and Localizer of BRCA2 (PALB2). The results of the review highlight the importance of identifying two new breast cancer susceptibility genes, other than the well known BRCA1and BRCA2, and the requirement of including these genes in standard breast cancer genetic testing. The third chapter is a review of literature to describe inflammatory breast cancer (IBC), pathogenicity of the disease and genomic investigation of IBC. IBC is an aggressive type of breast cancer with poor prognosis responsible for 2.5% of all new breast cancers. The majority of IBC patients are diagnosed with triple negative breast cancer (TNBC), which is the aggressive phenotype. The fourth chapter provides an overview of literature that describes the Protection Motivation Theory (PMT) and how it has been applied in a variety of research settings. A pilot study is suggested including PMT and its application for breast cancer prevention strategies uptake by patients who have a diagnosis of breast cancer. The pilot study would use a focus group of women with breast cancer to determine if the theory can guide prevention strategies for women with a mutation that causes the high risk to develop multiple types of primary cancers over their lifetime. The fifth chapter describes the dissertation work; a quantitative study that analyzes associations between aggressive breast cancer phenotypes in a population of women at high risk for hereditary breast cancer and specific GAs. The final chapter, is a synthesis of all manuscripts related to the breast cancer in the high risk population of women to develop this dreaded disease; breast cancer genomic investigation of ATM and PALB2 genes, the aggressive IBC, PMT application for breast cancer prevention strategies uptake and association of GAs and aggressive breast cancer phenotype. The populations in all the articles were women diagnosed with breast cancer and were at high risk of hereditary breast cancer syndromes. As a result of these manuscripts, it is expected to make suggestions for genetic testing guidelines to include multi-panel genetic testing for all eligible individuals as well as inclusion of tumor biomarkers and ethnicity in eligibility criteria. It is also recommended to apply PMT to encourage adherence to prevention strategies in order to reduce the risk of additional cancer primary

    Genomic and Clinical Assessment of Norrie Disease/ND

    Get PDF
    Norrie Disease is a very rare x-linked recessive disorder that affects males from birth. The primary feature is congenital blindness. The purpose of this poster is to discuss the clinical features of Norrie Disease, assess the pattern of genetic inheritance with family history and pedigree data, highlight the genetic diagnosis via linkage analysis, deletion/duplication assay, and gene sequencing techniques, and indicate treatment of Norrie Disease. Mutation of the NDP gene, the subsequent disruption in the Norrin protein, the resulting phenotype in individuals affected by this mutation, as well as clinical diagnosis and treatment, are features of this presentation. The genetic component of Norrie Disease is a focus. Up to date clinical diagnostic techniques are outlined

    ERBB family fusions are recurrent and actionable oncogenic targets across cancer types

    Get PDF
    PurposeGene fusions involving receptor tyrosine kinases (RTKs) define an important class of genomic alterations with many successful targeted therapies now approved for ALK, ROS1, RET and NTRK gene fusions. Fusions involving the ERBB family of RTKs have been sporadically reported, but their frequency has not yet been comprehensively analyzed and functional characterization is lacking on many types of ERBB fusions.Materials and methodsWe analyzed tumor samples submitted to Caris Life Sciences (n=64,354), as well as the TCGA (n=10,967), MSK IMPACT (n=10,945) and AACR GENIE (n=96,324) databases for evidence of EGFR, ERBB2 and ERBB4 gene fusions. We also expressed several novel fusions in cancer cell lines and analyzed their response to EGFR and HER2 tyrosine kinase inhibitors (TKIs).ResultsIn total, we identified 1,251 ERBB family fusions, representing an incidence of approximately 0.7% across all cancer types. EGFR, ERBB2, and ERBB4 fusions were most frequently found in glioblastoma, breast cancer and ovarian cancer, respectively. We modeled two novel types of EGFR and ERBB2 fusions, one with a tethered kinase domain and the other with a tethered adapter protein. Specifically, we expressed EGFR-ERBB4, EGFR-SHC1, ERBB2-GRB7 and ERBB2-SHC1, in cancer cell lines and demonstrated that they are oncogenic, regulate downstream signaling and are sensitive to small molecule inhibition with EGFR and HER2 TKIs.ConclusionsWe found that ERBB fusions are recurrent mutations that occur across multiple cancer types. We also establish that adapter-tethered and kinase-tethered fusions are oncogenic and can be inhibited with EGFR or HER2 inhibitors. We further propose a nomenclature system to categorize these fusions into several functional classes

    Predictive Biomarkers for Immunotherapy Response Beyond PD-1/PD-L1.

    No full text
    Advances in immuno-oncology over the last several years have led to FDA approvals of novel agents. As our understanding of immune response and its checkpoints has evolved, further advances have been made in treatment for several cancer types. To predict a response to immunotherapy, the initial biomarkers used were expression of the PD-1 receptor and PD-L1, as assessed by immunohistochemistry. More recently, predictive biomarkers have included microsatellite instability, DNA mismatch repair, and tumor mutational burden. Although these markers may be clinically relevant in predicting an immunotherapy response, cancer immunotherapy fails some patients. Improved understanding of the human immune system is necessary, as is a careful evaluation of the methods used to predict and assess response to immuno-oncology treatments. With the application of therapeutic immune-modulating agents, more comprehensive assays, and associated bioinformatics tools to accurately assess the tumor microenvironment, we may better predict responses to immuno-oncology agents and the ever-increasing complexity of their clinical use

    Molecular genomic profiling of adrenocortical cancers in clinical practice.

    No full text
    BACKGROUND: At presentation, 21% to 49% of patients with adrenocortical cancer have metastases. Standard chemotherapy has a 23% response rate. We assessed whether next generation sequencing could elucidate additional treatment options in refractory adrenocortical cancer. METHODS: Retrospective analysis using a commercial, 592-gene DNA-based panel was performed of next generation sequencing data from 94 adrenocortical cancer tumors profiled for clinical care. We compared our data to the adrenocortical cancer database of The Cancer Genome Atlas containing survival data. We evaluated mutations, indels, amplifications, tumor mutation burden, microsatellite instability, and programmed death-ligand 1 protein expression. RESULTS: Our cohort included 54 primary neoplasms and 40 metastatic lesions. The most frequently mutated genes were TP53 (36%) and CTNNB1 (19%). Low prevalence mutations were noted in 37 genes including DNA damage repair genes in 15 samples. High tumor mutation burden was seen in 3 patients, and programmed death-ligand 1 was positive in 12. Potential targets to Food and Drug Administration-approved drugs were seen in 16% of cases. CONCLUSION: DNA sequencing panel tests may identify therapeutic options for some patients with adrenocortical cancer. TP53 and mutations were associated with an adverse outcome. An expanded repertoire of drugs and, perhaps, more expansive multi-omic sequencing are needed to advance the treatment of adrenocortical cancer

    Capicua (CIC) mutations in gliomas in association with MAPK activation for exposing a potential therapeutic target.

    No full text
    Gliomas are the most prevalent neurological cancer in the USA and care modalities are not able to effectively combat these aggressive malignancies. Identifying new, more effective treatments require a deep understanding of the complex genetic variations and relevant pathway associations behind these cancers. Drawing connections between gene mutations with a responsive genetic target can help drive therapy selections to enhance patient survival. We have performed extensive molecular profiling of the Capicua gene (CIC), a tumor and transcriptional suppressor gene, and its mutation prevalence in reference to MAPK activation within clinical glioma tissue. CIC mutations occur far more frequently in oligodendroglioma (52.1%) than in low-grade astrocytoma or glioblastoma. CIC-associated mutations were observed across all glioma subtypes, and MAPK-associated mutations were most prevalent in CIC wild-type tissue regardless of the glioma subtype. MAPK activation, however, was enhanced in CIC-mutated oligodendroglioma. The totality of our observations reported supports the use of CIC as a relevant genetic marker for MAPK activation. Identification of CIC mutations, or lack thereof, can assist in selecting, implementing, and developing MEK/MAPK-inhibitory trials to improve patient outcomes potentially

    Genomic and Molecular Profiling of Human Papillomavirus Associated Head and Neck Squamous Cell Carcinoma Treated with Immune Checkpoint Blockade Compared to Survival Outcomes.

    No full text
    Recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) patients overall have a poor prognosis. However, human papillomavirus (HPV)-associated R/M oropharyngeal squamous cell carcinoma (OPSCC) is associated with a better prognosis compared to HPV-negative disease. Immune checkpoint blockade (ICB) is the standard of care for R/M HNSCC. However, whether HPV and its surrogate marker, p16, portend an improved response to ICB remains controversial. We queried the Caris Life Sciences CODEai database for p16+ and p16- HNSCC patients using p16 as a surrogate for HPV. A total of 2905 HNSCC (OPSCC, n = 948) cases were identified. Of those tested for both HPV directly and p16, 32% (251/791) were p16+ and 28% (91/326) were HPV+. The most common mutation in the OPSCC cohort was TP53 (33%), followed by PIK3CA (17%) and KMT2D (10.6%). TP53 mutations were more common in p16- (49%) versus the p16+ group (10%, p \u3c 0.0005). Real-world overall survival (rwOS) was longer in p16+ compared to p16- OPSCC patients, 33.3 vs. 19.1 months (HR = 0.597, p = 0.001), as well as non-oropharyngeal (non-OP) HNSCC patients (34 vs. 17 months, HR 0.551, p = 0.0001). There was no difference in the time on treatment (TOT) (4.2 vs. 2.8 months, HR 0.796, p = 0.221) in ICB-treated p16+ vs. p16- OPSCC groups. However, p16+ non-OP HNSCC patients treated with ICB had higher TOT compared to the p16- group (4.3 vs. 3.3 months, HR 0.632, p = 0.016), suggesting that p16 may be used as a prognostic biomarker in non-OP HNSCC, and further investigation through prospective clinical trials is warranted

    <i>BRCA1/2</i> Reversion Mutations in Patients Treated with Poly ADP-Ribose Polymerase (PARP) Inhibitors or Platinum Agents

    No full text
    Background: Reversion mutations in BRCA1/2, resulting in restoration of the open reading frame, have been identified as a mechanism of resistance to platinum-based chemotherapy or PARP inhibition. We sought to explore the incidence of BRCA1/2 reversion mutations in different tumor types. Methods: We retrospectively analyzed molecular profiling results from primary and/or metastatic tumor samples submitted by multiple institutions. The samples underwent DNA and RNA sequencing at a CLIA/CAP-certified clinical lab. Reversion mutations were called only in patients whose available clinical records showed the use of PARP inhibitors or platinum agents prior to tumor profiling. Results: Reversion mutations were identified in 75 of 247,926 samples profiled across all tumor types. Among patients carrying pathogenic or likely pathogenic BRCA1/2 mutations, reversion mutations in BRCA1/2 genes were seen in ovarian cancer (OC) (30/3424), breast cancer (BC) (27/1460), endometrial cancer (4/564), pancreatic cancer (2/340), cholangiocarcinoma (2/178), prostate cancer (5/461), cervical cancer (1/117), cancer of unknown primary (1/244), bladder cancer (1/300), malignant pleural mesothelioma (1/10), and a neuroendocrine tumor of the prostate. We identified 22 reversion mutations in BRCA1 and 8 in BRCA2 in OC. In BC, we detected 6 reversion mutations in BRCA1 and 21 in BRCA2. We compared molecular profile results of 14 high-grade serous ovarian cancers (HGSOC) with reversion mutations against 87 control HGSOC with pathogenic BRCA1/2 mutations without reversion mutations. Tumors with reversion mutations trended to have had lower ER expression (25% vs. 64%, p = 0.024, q = 0.82) and higher KDM6A mutation rate (15% vs. 0, p = 0.016, q = 0.82). Conclusions: We present one of the largest datasets reporting reversion mutations in BRCA1/2 genes across various tumor types. These reversion mutations were rare; this may be because some patients may not have had repeat profiling post-treatment. Repeat tumor profiling at times of treatment resistance can help inform therapy selection in the refractory disease setting
    corecore