5 research outputs found

    SerpinB3 Drives Cancer Stem Cell Survival in Glioblastoma

    Get PDF
    Despite therapeutic interventions for glioblastoma (GBM), cancer stem cells (CSCs) drive recurrence. The precise mechanisms underlying CSC resistance, namely inhibition of cell death, are unclear. We built on previous observations that the high cell surface expression of junctional adhesion molecule-A drives CSC maintenance and identified downstream signaling networks, including the cysteine protease inhibitor SerpinB3. Using genetic depletion approaches, we found that SerpinB3 is necessary for CSC maintenance, survival, and tumor growth, as well as CSC pathway activation. Knockdown of SerpinB3 also increased apoptosis and susceptibility to radiation therapy. SerpinB3 was essential to buffer cathepsin L-mediated cell death, which was enhanced with radiation. Finally, we found that SerpinB3 knockdown increased the efficacy of radiation in pre-clinical models. Taken together, our findings identify a GBM CSC-specific survival mechanism involving a cysteine protease inhibitor, SerpinB3, and provide a potential target to improve the efficacy of GBM therapies against therapeutically resistant CSCs

    Pretreatment with LCK inhibitors chemosensitizes cisplatin‐resistant endometrioid ovarian tumors

    No full text
    Abstract Background Ovarian cancer is the most fatal gynecologic malignancy in the United States. While chemotherapy is effective in the vast majority of ovarian cancer patients, recurrence and resistance to standard systemic therapy is nearly inevitable. We discovered that activation of the non-receptor tyrosine kinase Lymphocyte Cell-Specific Protein-Tyrosine Kinase (LCK) promoted cisplatin resistance. Here, we hypothesized that treating high grade, platinum resistant endometrioid cancer cells with an LCK inhibitor (LCKi) followed by co-treatment with cisplatin would lead to increased cisplatin efficacy. Our objective was to assess clinical outcomes associated with increased LCK expression, test our hypothesis of utilizing LCKi as pre-treatment followed by co-treatment with cisplatin in platinum resistant ovarian cancer in vitro, and evaluate our findings in vivo to assess LCKi applicability as a therapeutic agent. Results Kaplan-Meier (KM) plotter data indicated LCK expression is associated with significantly worse median progression-free survival (HR 3.19, p = 0.02), and a trend toward decreased overall survival in endometrioid ovarian tumors with elevated LCK expression (HR 2.45, p = 0.41). In vitro, cisplatin resistant ovarian endometrioid cells treated first with LCKi followed by combination LCKi-cisplatin treatment showed decreased cell viability and increased apoptosis. Immunoblot studies revealed LCKi led to increased expression of phosphorylated H2A histone family X ( γ γ\gamma -H2AX), a marker for DNA damage. In vivo results demonstrate treatment with LCKi followed by LCKi-cisplatin led to significantly slowed tumor growth. Conclusions We identified a strategy to therapeutically target cisplatin resistant endometrioid ovarian cancer leading to chemosensitization to platinum chemotherapy via treatment with LCKi followed by co-treatment with LCKi-cisplatin
    corecore