29 research outputs found
An unedited 1.1 kb mitochondrial orfB gene transcript in the Wild Abortive Cytoplasmic Male Sterility (WA-CMS) system of Oryza sativa L. subsp. indica
<p>Abstract</p> <p>Background</p> <p>The application of hybrid rice technology has significantly increased global rice production during the last three decades. Approximately 90% of the commercially cultivated rice hybrids have been derived through three-line breeding involving the use of WA-CMS lines. It is believed that during the 21<sup>st </sup>century, hybrid rice technology will make significant contributions to ensure global food security. This study examined the poorly understood molecular basis of the WA-CMS system in rice.</p> <p>Results</p> <p>RFLPs were detected for <it>atp6 </it>and <it>orfB </it>genes in sterile and fertile rice lines, with one copy of each in the mt-genome. The RNA profile was identical in both lines for <it>atp6</it>, but an additional longer <it>orfB </it>transcript was identified in sterile lines. 5' RACE analysis of the long <it>orfB </it>transcript revealed it was 370 bp longer than the normal transcript, with no indication it was chimeric when compared to the genomic DNA sequence. cDNA clones of the longer <it>orfB </it>transcript in sterile lines were sequenced and the transcript was determined unedited. Sterile lines were crossed with the restorer and maintainer lines, and fertile and sterile F<sub>1 </sub>hybrids were respectively generated. Both hybrids contained two types of <it>orfB </it>transcripts. However, the long transcript underwent editing in the fertile F<sub>1 </sub>hybrids and remained unedited in the sterile lines. Additionally, the editing of the 1.1 kb <it>orfB </it>transcript co-segregated with fertility restoring alleles in a segregating population of F<sub>2 </sub>progeny; and the presence of unedited long <it>orfB </it>transcripts was detected in the sterile plants from the F<sub>2 </sub>segregating population.</p> <p>Conclusion</p> <p>This study helped to assign plausible operative factors responsible for male-sterility in the WA cytoplasm of rice. A new point of departure to dissect the mechanisms governing the CMS-WA system in rice has been identified, which can be applied to further harness the opportunities afforded by hybrid vigor in rice.</p
Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects
Issues relating to sustenance of the usefulness of genetically modified first generation Bt crop plants in the farmer’s field are of great concern for crop scientists. Additional biotechnological strategies need to be in place to safeguard the possibility for yield loss of Bt crop by other lepidopteran insects that are insensitive to the Cry1A toxin, and also against the possibility for emergence of resistant insects. In this respect, Cry2A toxin has figured as a prospective candidate to be the second toxin to offer the required protection along with Cry1A. In the present study, the entomocidal potency of Cry2A toxin was enhanced through knowledge-based protein engineering of the toxin molecule. Deletion of 42 amino acid residues from the N-terminal end of the peptide followed by the replacement of Lys residues by nonpolar amino acids in the putative transmembrane region including the introduction of Pro resulted in a 4.1–6.6-fold increase in the toxicity of the peptide against three major lepidopteran insect pests of crop plants
Matter-gravity interaction in a multiply warped braneworld,
The role of a bulk graviton in predicting the signature of extra dimensions
through collider-based experiments is explored in the context of a multiply
warped spacetime. In particular it is shown that in a doubly warped braneworld
model, the presence of the sixth dimension, results in enhanced concentration
of graviton Kaluza Klein (KK) modes compared to that obtained in the usual
5-dimensional Randall-Sundrum model. Also, the couplings of these massive
graviton KK modes with the matter fields on the visible brane turn out to be
appreciably larger than that in the corresponding 5- dimensional model. The
significance of these results are discussed in the context of KK graviton
search at the Large Hadron Collider (LHC).Comment: 13 pages, 2 table
Correction: Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.
[This corrects the article DOI: 10.1371/journal.pone.0150763.]
Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.
Drought is one of the major limiting factors for productivity of crops including rice (Oryza sativa L.). Understanding the role of allelic variations of key regulatory genes involved in stress-tolerance is essential for developing an effective strategy to combat drought. The bZIP transcription factors play a crucial role in abiotic-stress adaptation in plants via abscisic acid (ABA) signaling pathway. The present study aimed to search for allelic polymorphism in the OsbZIP23 gene across selected drought-tolerant and drought-sensitive rice genotypes, and to characterize the new allele through overexpression (OE) and gene-silencing (RNAi). Analyses of the coding DNA sequence (CDS) of the cloned OsbZIP23 gene revealed single nucleotide polymorphism at four places and a 15-nucleotide deletion at one place. The single-copy OsbZIP23 gene is expressed at relatively higher level in leaf tissues of drought-tolerant genotypes, and its abundance is more in reproductive stage. Cloning and sequence analyses of the OsbZIP23-promoter from drought-tolerant O. rufipogon and drought-sensitive IR20 cultivar showed variation in the number of stress-responsive cis-elements and a 35-nucleotide deletion at 5'-UTR in IR20. Analysis of the GFP reporter gene function revealed that the promoter activity of O. rufipogon is comparatively higher than that of IR20. The overexpression of any of the two polymorphic forms (1083 bp and 1068 bp CDS) of OsbZIP23 improved drought tolerance and yield-related traits significantly by retaining higher content of cellular water, soluble sugar and proline; and exhibited decrease in membrane lipid peroxidation in comparison to RNAi lines and non-transgenic plants. The OE lines showed higher expression of target genes-OsRab16B, OsRab21 and OsLEA3-1 and increased ABA sensitivity; indicating that OsbZIP23 is a positive transcriptional-regulator of the ABA-signaling pathway. Taken together, the present study concludes that the enhanced gene expression rather than natural polymorphism in coding sequence of OsbZIP23 is accountable for improved drought tolerance and yield performance in rice genotypes
Comparison of leaf water retention capacity and reactive oxygen species (ROS) activity in <i>OsbZIP23</i> OE and RNAi lines.
<p><b>(A)</b> Water loss rates and <b>(B)</b> relative water contents of detached leaves, at the five-leaf stage amongst <i>OsbZIP23</i> OE lines, RNAi lines and NT plants. Measurement of <b>(C)</b> proline and <b>(D)</b> soluble sugar contents in <i>OsbZIP23</i> OE lines, RNAi lines and NT plants, after extraction from leaf tissues before and after water stress. All the results were based on three independent experiments. Data bars represent the mean ±SD of triplicate measurement. A statistical analysis by Student’s t-test indicated significant differences (*P<0.05, **P<0.01). <b>(E)</b> Measurement of MDA content in <i>OsbZIP23</i> OE, RNAi lines and NT plants, after extraction from leaf tissue of rice plants before and after water stress. Data bars represent the mean ±SD of triplicate measurement. A statistical analysis by Student’s t-test indicated significant differences (*P<0.05, **P<0.01). <b>(F)</b> Detection of ROS by monitoring H<sub>2</sub>O<sub>2</sub> production in leaves of <i>OsbZIP23</i> OE, RNAi lines and NT plants were visualized by staining with 3, 3<sup>׳</sup>–diaminobenzidine (DAB) under well-watered (normal) and drought stress condition. <b>(G)</b> Production of O<sub>2</sub><sup>−</sup> ions in leaves of <i>OsbZIP23</i> OE, RNAi lines and NT plants were visualized by staining with nitro blue tetrazolium (NBT) under normal and drought stress condition. The results were based on three independent experiments; one set of result is represented here.</p