15 research outputs found

    Hepatitis C Virus: Structural Insights into Protease Inhibitor Efficacy and Drug Resistance: A Dissertation

    Get PDF
    The Hepatitis C Virus (HCV) is a global health problem as it afflicts an estimated 170 million people worldwide and is the major cause of viral hepatitis, cirrhosis and liver cancer. HCV is a rapidly evolving virus, with 6 major genotypes and multiple subtypes. Over the past 20 years, HCV therapeutic efforts have focused on identifying the best-in-class direct acting antiviral (DAA) targeting crucial components of the viral lifecycle, The NS3/4A protease is responsible for processing the viral polyprotein, a crucial step in viral maturation, and for cleaving host factors involved in activating immunity. Thus targeting the NS3/4A constitutes a dual strategy of restoring the immune response and halting viral maturation. This high priority target has 4 FDA approved inhibitors as well as several others in clinical development. Unfortunately, the heterogeneity of the virus causes seriously therapeutic challenges, particularly the NS3/4A protease inhibitors (PIs), which suffer from both the rapid emergence of drug resistant mutants as well as a lack of pan-genotypic activity. My thesis research focused on filling two critical gaps in our structural understanding of inhibitor binding modes. The first gap in knowledge is the molecular basis by which macrocyclization of PIs improves antiviral activity. Macrocycles are hydrophobic chains used to link neighboring chemical moieties within an inhibitor and create a structurally pre-organized ligand. In HCV PIs, macrocycle come in two forms: a P1 - P3 and P2 - P4 strategy. I investigated the structural and thermodynamic basis of the role of macrocyclization in reducing resistance susceptibility. For a rigorous comparison, we designed and synthesized both a P1 - P3 and a linear analog of grazoprevir, a P2 - P4 inhibitor. I found that, while the P2 - P4 strategy is more favorable for achieving potency, it does not allow the inhibitor sufficient flexibility to accommodate resistance mutations. On the other hand, the P1 - P3 strategy strikes a better balance between potency and resistance barrier. The second gap my thesis addresses is elucidating the structural basis by which highly potent protease inhibitors function in genotype 1 but not in genotype 3, despite having an 87% sequence similarity. After mapping the amino acids responsible for this differential efficacy in genotypes 1 and 3, I engineered a 1a3a chimeric protease for crystallographic studies. My structural characterization of three PIs in complex with both the 1a3a and genotype 1 protease revealed that the loss of inhibitor efficacy in the 1a3a and GT-3 proteases is a consequence of disrupted electrostatic interactions between amino acids 168 and 155, which is critical for potent binding of quinoline and isoindoline based PIs. Here, I have revealed details of molecular and structural basis for the lack of PI efficacy against GT-3, which are needed for design of pan-genotypic inhibitors

    The Molecular Basis of Drug Resistance against Hepatitis C Virus NS3/4A Protease Inhibitors

    Get PDF
    Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors - telaprevir, danoprevir, vaniprevir and MK-5172 - in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus

    Structural analysis of asunaprevir resistance in HCV NS3/4A protease

    No full text
    Asunaprevir (ASV), an isoquinoline-based competitive inhibitor targeting the hepatitis C virus (HCV) NS3/4A protease, is very potent in vivo. However, the potency is significantly compromised by the drug resistance mutations R155K and D168A. In this study three crystal structures of ASV and an analogue were determined to analyze the structural basis of drug resistance susceptibility. These structures revealed that ASV makes extensive contacts with Arg155 outside the substrate envelope. Arg155 in turn is stabilized by Asp168, and thus when either residue is mutated, the enzyme\u27s interaction with ASV\u27s P2* isoquinoline is disrupted. Adding a P1-P3 macrocycle to ASV enhances the inhibitor\u27s resistance barrier, likely due to poising the inhibitor to its bound conformation. Macrocyclic inhibitors with P2* extension moieties avoiding interaction with the protease S2 residues including Arg155 must be chosen for future design of more robust protease inhibitors

    Structural and Thermodynamic Effects of Macrocyclization in HCV NS3/4A Inhibitor MK-5172

    No full text
    Recent advances in direct-acting antivirals against Hepatitis C Virus (HCV) have led to the development of potent inhibitors, including MK-5172, that target the viral NS3/4A protease with relatively low susceptibility to resistance. MK-5172 has a P2-P4 macrocycle and a unique binding mode among current protease inhibitors where the P2 quinoxaline packs against the catalytic residues H57 and D81. However, the effect of macrocyclization on this binding mode is not clear, as is the relation between macrocyclization, thermodynamic stabilization, and susceptibility to the resistance mutation A156T. We have determined high-resolution crystal structures of linear and P1-P3 macrocyclic analogs of MK-5172 bound to WT and A156T protease and compared these structures, their molecular dynamics and experimental binding thermodynamics to the parent compound. We find that the unique binding mode of MK-5172 is conserved even when the P2-P4 macrocycle is removed or replaced with a P1-P3 macrocycle. While beneficial to decreasing the entropic penalty associated with binding, the constraint exerted by the P2-P4 macrocycle prevents efficient rearrangement to accommodate the A156T mutation, a deficit alleviated in the linear and P1-P3 analogs. Design of macrocyclic inhibitors against NS3/4A needs to achieve the best balance between exerting optimal conformational constraint for enhancing potency, fitting within the substrate envelope and allowing adaptability to be robust against resistance mutations

    Evaluating the Role of Macrocycles in the Susceptibility of Hepatitis C Virus NS3/4A Protease Inhibitors to Drug Resistance

    No full text
    The hepatitis C virus (HCV) infects an estimated 150 million people worldwide and is the major cause of viral hepatitis, cirrhosis, and liver cancer. The available antiviral therapies, which include PEGylated interferon, ribavirin, and one of the HCV NS3/4A protease inhibitors telaprevir or boceprevir, are ineffective for some patients and cause severe side effects. More potent NS3/4A protease inhibitors are in clinical development, but the long-term effectiveness of these drugs is challenged by the development of drug resistance. Here, we investigated the role of macrocycles in the susceptibility of NS3/4A protease inhibitors to drug resistance in asunaprevir, danoprevir, vaniprevir, and MK-5172, with similar core structures but varied P2 moieties and macrocyclizations. Linear and macrocyclic analogues of these drugs were designed, synthesized, and tested against wild-type and drug-resistant variants R155K, V36M/R155K, A156T, and D168A in enzymatic and antiviral assays. Macrocyclic inhibitors were generally more potent, but the location of the macrocycle was critical for retaining activity against drug-resistant variants: the P1-P3 macrocyclic inhibitors were less susceptible to drug resistance than the linear and P2-P4 macrocyclic analogues. In addition, the heterocyclic moiety at P2 largely determined the inhibitor resistance profile, susceptibility to drug resistance, and the extent of modulation by the helicase domain. Our findings suggest that to design robust inhibitors that retain potency to drug-resistant NS3/4A protease variants, inhibitors should combine P1-P3 macrocycles with flexible P2 moieties that optimally contact with the invariable catalytic triad of this enzyme

    Evaluating the Role of Macrocycles in the Susceptibility of Hepatitis C Virus NS3/4A Protease Inhibitors to Drug Resistance

    No full text
    The hepatitis C virus (HCV) infects an estimated 150 million people worldwide and is the major cause of viral hepatitis, cirrhosis, and liver cancer. The available antiviral therapies, which include PEGylated interferon, ribavirin, and one of the HCV NS3/4A protease inhibitors telaprevir or boceprevir, are ineffective for some patients and cause severe side effects. More potent NS3/4A protease inhibitors are in clinical development, but the long-term effectiveness of these drugs is challenged by the development of drug resistance. Here, we investigated the role of macrocycles in the susceptibility of NS3/4A protease inhibitors to drug resistance in asunaprevir, danoprevir, vaniprevir, and MK-5172, with similar core structures but varied P2 moieties and macrocyclizations. Linear and macrocyclic analogues of these drugs were designed, synthesized, and tested against wild-type and drug-resistant variants R155K, V36M/R155K, A156T, and D168A in enzymatic and antiviral assays. Macrocyclic inhibitors were generally more potent, but the location of the macrocycle was critical for retaining activity against drug-resistant variants: the P1–P3 macrocyclic inhibitors were less susceptible to drug resistance than the linear and P2–P4 macrocyclic analogues. In addition, the heterocyclic moiety at P2 largely determined the inhibitor resistance profile, susceptibility to drug resistance, and the extent of modulation by the helicase domain. Our findings suggest that to design robust inhibitors that retain potency to drug-resistant NS3/4A protease variants, inhibitors should combine P1–P3 macrocycles with flexible P2 moieties that optimally contact with the invariable catalytic triad of this enzyme

    Stereo view of the telaprevir complexes.

    No full text
    <p>(A) Telaprevir bound to the wild-type protease with the substrate envelope in blue. Intra- and inter-molecular hydrogen bond interactions are marked as red and grey dashed lines. Telaprevir is also shown bound to the drug-resistant variants (B) R155K, (C) D168A and (D) A156T with the transparent coordinates representing the wild-type structure to better highlight the molecular changes of each mutation. In all cases, catalytic residues are depicted in yellow, the P2 subsite in pink, and the drug molecules in orange.</p

    The binding conformations of telaprevir, danoprevir, vaniprevir and MK-5172.

    No full text
    <p>Surface representations of the wild-type protease in complex with (A) telaprevir, (B) danoprevir, (C) vaniprevir, and (D) MK-5172. The catalytic triad is shown in yellow and the R155, A156 and D168 side chains are highlighted in light-blue, pale-green and red, respectively.</p
    corecore