208 research outputs found
Tracing the evolution of the symmetry energy of hot nuclear fragments from the compound nucleus towards multifragmentation
The evolution of the symmetry energy coefficient of the binding energy of hot
fragments with increasing excitation is explored in multifragmentation
processes following heavy-ion collisions below the Fermi energy. In this work,
high-resolution mass spectrometric data on isotopic distributions of
projectile-like fragments from collisions of 25 MeV/nucleon 86Kr and 64Ni beams
on heavy neutron-rich targets are systematically compared to calculations
involving the Statistical Multifragmentation Model. The study reveals a gradual
decrease of the symmetry energy coefficient from 25 MeV at the compound nucleus
regime (E*/A < 2 MeV) towards 15 MeV in the bulk multifragmentation regime
(E*/A > 4 MeV). The ensuing isotopic distributions of the hot fragments are
found to be very wide and extend towards the neutron drip-line. These findings
may have important implications to the composition and evolution of hot
astrophysical environments, such as core-collapse supernova.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Isotopic Scaling of Heavy Projectile Residues from the collisions of 25 MeV/nucleon 86Kr with 124Sn, 112Sn and 64Ni, 58Ni
The scaling of the yields of heavy projectile residues from the reactions of
25 MeV/nucleon 86Kr projectiles with 124Sn,112Sn and 64Ni, 58Nitargets is
studied. Isotopically resolved yield distributions of projectile fragments in
the range Z=10-36 from these reaction pairs were measured with the MARS recoil
separator in the angular range 2.7-5.3 degrees. The velocities of the residues,
monotonically decreasing with Z down to Z~26-28, are employed to characterize
the excitation energy. The yield ratios R21(N,Z) for each pair of systems are
found to exhibit isotopic scaling (isoscaling), namely, an exponential
dependence on the fragment atomic number Z and neutron number N. The isoscaling
is found to occur in the residue Z range corresponding to the maximum observed
excitation energies. The corresponding isoscaling parameters are alpha=0.43 and
beta=-0.50 for the Kr+Sn system and alpha=0.27 and beta=-0.34 for the Kr+Ni
system. For the Kr+Sn system, for which the experimental angular acceptance
range lies inside the grazing angle, isoscaling was found to occur for Z<26 and
N<34. For heavier fragments from Kr+Sn, the parameters vary monotonically,
alpha decreasing with Z and beta increasing with N. This variation is found to
be related to the evolution towards isospin equilibration and, as such, it can
serve as a tracer of the N/Z equilibration process. The present heavy-residue
data extend the observation of isotopic scaling from the intermediate mass
fragment region to the heavy-residue region. Such high-resolution mass
spectrometric data can provide important information on the role of isospin in
peripheral and mid-peripheral collisions, complementary to that accessible from
modern large-acceptance multidetector devices.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Enhanced Production of Neutron-Rich Rare Isotopes in Peripheral Collisions at Fermi Energies
A large enhancement in the production of neutron-rich projectile residues is
observed in the reactions of a 25 MeV/nucleon 86Kr beam with the neutron rich
124Sn and 64Ni targets relative to the predictions of the EPAX parametrization
of high-energy fragmentation, as well as relative to the reaction with the less
neutron-rich 112Sn target. The data demonstrate the significant effect of the
target neutron-to-proton ratio (N/Z) in peripheral collisions at Fermi
energies. A hybrid model based on a deep-inelastic transfer code (DIT) followed
by a statistical de-excitation code appears to account for part of the observed
large cross sections. The DIT simulation indicates that the production of the
neutron-rich nuclides in these reactions is associated with peripheral nucleon
exchange. In such peripheral encounters, the neutron skins of the neutron-rich
124Sn and 64Ni target nuclei may play an important role. From a practical
viewpoint, such reactions between massive neutron-rich nuclei offer a novel and
attractive synthetic avenue to access extremely neutron-rich rare isotopes
towards the neutron-drip line.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Analysis of fragment yield ratios in the nuclear phase transition
The critical phenomena of the liquid-gas phase transition has been
investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon
using the Landau free energy approach with isospin asymmetry as an order
parameter. Fits to the free energy of fragments showed three minima suggesting
the system to be in the regime of a first order phase transition. The relation
m =-{\partial}F/{\partial}H, which defines the order parameter and its
conjugate field H, has been experimentally verified from the linear dependence
of the mirror nuclei yield ratio data, on the isospin asymmetry of the source.
The slope parameter, which is a measure of the distance from a critical
temperature, showed a systematic decrease with increasing excitation energy of
the source. Within the framework of the Landau free energy approach, isoscaling
provided similar results as obtained from the analysis of mirror nuclei yield
ratio data. We show that the external field is primarily related to the minimum
of the free energy, which implies a modification of the source concentration
\Delta used in isospin studies
Investigation of transverse collective flow of intermediate mass fragments
The transverse flow of intermediate mass fragments (IMFs) has been investigated for the 35 MeV/u , , and systems. A transition from the IMF transverse flow strongly depending on the mass of the system, in the most violent collisions, to a dependence on the charge of the system, for the peripheral reactions, is shown. This transition was shown to be sensitive to the density dependence of the symmetry energy using the antisymmetrized molecular-dynamics model. The results present an observable, the IMF transverse flow, that can be used to probe the nuclear equation of state. Comparison with the simulation demonstrated a preference for a stiff density dependence of the symmetry energy
Neutron to proton ratios of quasiprojectile and midrapidity emission in the Zn + Zn reaction at 45 MeV/nucleon
Simultaneous measurement of both neutrons and charged particles emitted in
the reaction Zn + Zn at 45 MeV/nucleon allows comparison of the
neutron to proton ratio at midrapidity with that at projectile rapidity. The
evolution of N/Z in both rapidity regimes with increasing centrality is
examined. For the completely re-constructed midrapidity material one finds that
the neutron-to-proton ratio is above that of the overall Zn + Zn
system. In contrast, the re-constructed ratio for the quasiprojectile is below
that of the overall system. This difference provides the most complete evidence
to date of neutron enrichment of midrapidity nuclear matter at the expense of
the quasiprojectile
Transverse collective flow and midrapidity emission of isotopically identified light charged particles
The transverse flow and relative midrapidity yield of isotopically identified light charged particles (LCPs) has been examined for the 35 MeV/nucleon , , and systems. A large enhancement of the midrapidity yield of the LCPs was observed relative to the yield near the projectile rapidity. In particular, this enhancement was increased for the more neutron-rich LCPs demonstrating a preference for the production of neutron-rich fragments in the midrapidity region. Additionally, the transverse flow of the LCPs was extracted, which provides insight into the average movement of the particles in the midrapidity region. Isotopic and isobaric effects were observed in the transverse flow of the fragments. In both cases, the transverse flow was shown to decrease with an increasing neutron content in the fragments. A clear inverse relationship between the transverse flow and the relative midrapidity yield is shown. The increased relative midrapidity emission produces a decreased transverse flow. The stochastic mean-field model was used for comparison to the experimental data. The results showed that the model was able to reproduce the general isotopic and isobaric trends for the midrapidity emission and transverse flow. The sensitivity of these observables to the density dependence of the symmetry energy was explored. The results indicate that the transverse flow and midrapidity emission of the LCPs are sensitive to the denisty dependence of the symmetry energy
Analysis of fragment yield ratios in the nuclear phase transition
The critical phenomena of the liquid-gas phase transition has been
investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon
using the Landau free energy approach with isospin asymmetry as an order
parameter. Fits to the free energy of fragments showed three minima suggesting
the system to be in the regime of a first order phase transition. The relation
m =-{\partial}F/{\partial}H, which defines the order parameter and its
conjugate field H, has been experimentally verified from the linear dependence
of the mirror nuclei yield ratio data, on the isospin asymmetry of the source.
The slope parameter, which is a measure of the distance from a critical
temperature, showed a systematic decrease with increasing excitation energy of
the source. Within the framework of the Landau free energy approach, isoscaling
provided similar results as obtained from the analysis of mirror nuclei yield
ratio data. We show that the external field is primarily related to the minimum
of the free energy, which implies a modification of the source concentration
\Delta used in isospin studies
- …