17 research outputs found

    Seasonal performance of a malaria rapid diagnosis test at community health clinics in a malaria-hyperendemic region of Burkina Faso

    Get PDF
    BACKGOUND: Treatment of confirmed malaria patients with Artemisinin-based Combination Therapy (ACT) at remote areas is the goal of many anti-malaria programs. Introduction of effective and affordable malaria Rapid Diagnosis Test (RDT) in remote areas could be an alternative tool for malaria case management. This study aimed to assess performance of the OptiMAL dipstick for rapid malaria diagnosis in children under five. METHODS: Malaria symptomatic and asymptomatic children were recruited in a passive manner in two community clinics (CCs). Malaria diagnosis by microscopy and RDT were performed. Performance of the tests was determined. RESULTS: RDT showed similar ability (61.2%) to accurately diagnose malaria as microscopy (61.1%). OptiMAL showed a high level of sensitivity and specificity, compared with microscopy, during both transmission seasons (high & low), with a sensitivity of 92.9% vs. 74.9% and a specificity of 77.2% vs. 87.5%. CONCLUSION: By improving the performance of the test through accurate and continuous quality control of the device in the field, OptiMAL could be suitable for use at CCs for the management and control of malaria

    Discrepant Prevalence and Incidence of Leishmania Infection between Two Neighboring Villages in Central Mali Based on Leishmanin Skin Test Surveys

    Get PDF
    Leishmaniasis is a vector-borne disease transmitted to humans by the bite of an infected sand fly. Leishmaniasis is present in more than 88 countries and affects more than 12 million people. Depending on the species of Leishmania, the host can develop cutaneous leishmaniasis (CL), which is characterized by skin ulcers in uncovered parts of the body or a more severe form, visceral leishmaniasis, which affects the liver and spleen and is fatal if not treated. This study aims to establish the past and present infection with Leishmania parasites in two villages where recent cases have been diagnosed by the dermatology center (CNAM) in Bamako. This was achieved using a Leishmania-specific skin test that was administered annually to permanent residents of Kemena and Sougoula villages from 2006 to 2008. The results show that transmission of Leishmania is active and stable in these two villages. Moreover, despite sharing similar cultural and environmental features, the individuals from Kemena presented three times the risk of Leishmania infection compared with those from Sougoula. Our findings raise awareness of the continued presence of CL in Mali

    Failure to Recognize Nontuberculous Mycobacteria Leads to Misdiagnosis of Chronic Pulmonary Tuberculosis

    Get PDF
    BACKGROUND: Nontuberculous mycobacterial (NTM) infections cause morbidity worldwide. They are difficult to diagnose in resource-limited regions, and most patients receive empiric treatment for tuberculosis (TB). Our objective here is to evaluate the potential impact of NTM diseases among patients treated presumptively for tuberculosis in Mali. METHODS: We re-evaluated sputum specimens among patients newly diagnosed with TB (naïve) and those previously treated for TB disease (chronic cases). Sputum microscopy, culture and Mycobacterium tuberculosis drug susceptibility testing were performed. Identification of strains was performed using molecular probes or sequencing of secA1 and/or 16S rRNA genes. RESULTS: Of 142 patients enrolled, 61 (43%) were clinically classified as chronic cases and 17 (12%) were infected with NTM. Eleven of the 142 (8%) patients had NTM disease alone (8 M. avium, 2 M. simiae and 1 M. palustre). All these 11 were from the chronic TB group, comprising 11/61 (18%) of that group and all were identified as candidates for second line treatment. The remaining 6/17 (35.30%) NTM infected patients had coinfection with M. tuberculosis and all 6 were from the TB treatment naïve group. These 6 were candidates for the standard first line treatment regimen of TB. M. avium was identified in 11 of the 142 (8%) patients, only 3/11 (27.27%) of whom were HIV positive. CONCLUSIONS: NTM infections should be considered a cause of morbidity in TB endemic environments especially when managing chronic TB cases to limit morbidity and provide appropriate treatment

    Persistent Submicroscopic Plasmodium falciparum Parasitemia 72 Hours after Treatment with Artemether-Lumefantrine Predicts 42-Day Treatment Failure in Mali and Burkina Faso.

    Get PDF
    A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore