116 research outputs found

    Comparison of the National Bureau of Standards and the Helsinki Temperature Scales and its Effect on the Heat Capacity of Liquid 3He below 10 mK

    Get PDF
    The Helsinki temperature scale, used earlier in measurements of the heat capacity of liquid 3He (1-10 mK), is compared with the National Bureau of Standards (NBS) noise and nuclear-orientation temperature scale. The superfluid transition temperature (Tc) of 3He at zero pressure and the superconductive transition temperatures of tungsten and beryllium were used as fixed points. Tc on the NBS scale was found to be 1.025 ± 0.02 mK, in close agreement with the Helsinki value 1.04 mK. The results support the Helsinki data on the heat capacity of 3He.Peer reviewe

    Andreev Reflection in Ferromagnet/Superconductor/Ferromagnet Double Junction Systems

    Full text link
    We present a theory of Andreev reflection in a ferromagnet/superconductor/ferromagnet double junction system. The spin polarized quasiparticles penetrate to the superconductor in the range of penetration depth from the interface by the Andreev reflection. When the thickness of the superconductor is comparable to or smaller than the penetration depth, the spin polarized quasiparticles pass through the superconductor and therefore the electric current depends on the relative orientation of magnetizations of the ferromagnets. The dependences of the magnetoresistance on the thickness of the superconductor, temperature, the exchange field of the ferromagnets and the height of the interfacial barriers are analyzed. Our theory explains recent experimental results well.Comment: 8 pages, 9 figures, submitted to Phys. Rev.

    Spin accumulation induced resistance in mesoscopic ferromagnet/ superconductor junctions

    Get PDF
    We present a description of spin-polarized transport in mesoscopic ferromagnet-superconductor (F/S) systems, where the transport is diffusive, and the interfaces are transparent. It is shown that the spin reversal associated with Andreev reflection generates an excess spin density close to the F/S interface, which leads to a spin contact resistance. Expressions for the contact resistance are given for two terminal and four terminal geometries. In the latter the sign depends on the relative magnetization of the ferromagnetic electrodes.Comment: RevTeX 10 pages, 4 figures, submitted to Phys.Rev. Let

    A spin triplet supercurrent through the half-metallic ferromagnet CrO2

    Full text link
    In general, conventional superconductivity should not occur in a ferromagnet, though it has been seen in iron under pressure. Moreover, theory predicts that the current is always carried by pairs of electrons in a spin singlet state, so conventional superconductivity decays very rapidly when in contact with a ferromagnet, which normally prohibits the existence of singlet pairs. It has been predicted that this rapid spatial decay would not occur when spin triplet superconductivity could be induced in the ferromagnet. Here we report a Josephson supercurrent through the strong ferromagnet CrO2, from which we infer that it is a spin triplet supercurrent. Our experimental setup is different from those envisaged in the earlier predictions, but we conclude that the underlying physical explanation for our result is a conversion from spin singlet to spin triplets at the interface. The supercurrent can be switched with the direction of the magnetization, analogous to spin valve transistors, and therefore could enable magnetization-controlled Josephson junctions.Comment: 14 pages, including 3 figure

    Measurements of Spin Polarization of Epitaxial SrRuO3 Thin Films

    Full text link
    We have measured the transport spin-polarization of epitaxial thin films of the conductive ferromagnetic oxide, SrRuO3, using Point Contact Andreev Reflection Spectroscopy (PCAR). In spite of the fact that spin-up and spin-down electronic densities of states at the Fermi level for SrRuO3 calculated from band structure theory are practically the same, the experimental transport spin polarization for these films was found to be about 50%. This result is a direct consequence of the Fermi velocity disparity between the majority and minority bands and is in good agreement with our theoretical estimates.Comment: 12 pages pdf onl

    Spin-Imbalance and Magnetoresistance in Ferromagnet/Superconductor/Ferromagnet Double Tunnel Junctions

    Full text link
    We theoretically study the spin-dependent transport in a ferromagnet/super- conductor/ferromagnet double tunnel junction. The tunneling current in the antiferromagnetic alignment of the magnetizations gives rise to a spin imbalance in the superconductor. The resulting nonequilibrium spin density strongly suppresses the superconductivity with increase of bias voltage and destroys it at a critical voltage Vc. The results provide a new method not only for measuring the spin polarization of ferromagnets but also for controlling superconductivity and tunnel magnetoresistance (TMR) by applying the bias voltage.Comment: 4pages, to be published in Phys. Rev. Let

    Spin polarized tunneling in ferromagnet/unconventional superconductor junctions

    Full text link
    We study tunneling in ferromagnet/unconventional superconductor (F/S) junctions. We include the effects of spin polarization, interfacial resistance, and Fermi wavevector mismatch (FWM) between the F and S regions. Andreev reflection (AR) at the F/S interface, governing tunneling at low bias voltage, is strongly modified by these parameters. The conductance exhibits a very wide variety of features as a function of applied voltage.Comment: Revision includes new figures with angular averages and correction of minor error

    Observation of anomalous single-magnon scattering in half-metallic ferromagnets by chemical pressure control

    Full text link
    Temperature variation of resistivity and specific heat have been measured for prototypical half-metallic ferromagnets, R_0.6Sr_0.4MnO_3, with controlling the one-electron bandwidth W. We have found variation of the temperature scalings in the resistivity from T^2 (R = La, and Nd) to T^3 (R = Sm), and have interpreted the $T^3-law in terms of the anomalous single-magnon scattering (AMS) process in the half-metallic system.Comment: To appear in Phys. Rev. Lett., 3 pages + 4 EPS figure

    Spin diffusion and injection in semiconductor structures: Electric field effects

    Full text link
    In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS+^+) at the FM interface, thus FM/NS+^+/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors

    Spin current in ferromagnet/insulator/superconductor junctions

    Full text link
    A theory of spin polarized tunneling spectroscopy based on a scattering theory is given for tunneling junctions between ferromagnets and d-wave superconductors. The spin filtering effect of an exchange field in the insulator is also treated. We clarify that the properties of the Andreev reflection are largely modified due to a presence of an exchange field in the ferromagnets, and consequently the Andreev reflected quasiparticle shows an evanescent-wave behavior depending on the injection angle of the quasiparticle. Conductance formulas for the spin current as well as the charge current are given as a function of the applied voltage and the spin-polarization in the ferromagnet for arbitrary barrier heights. It is shown that the surface bound states do not contribute to the spin current and that the zero-bias conductance peak expected for a d-wave superconductor splits into two peaks under the influence of the exchange interaction in the insulator.Comment: 14 pages, 11 figure
    • …
    corecore