2 research outputs found

    27-hydroxylation of oncosterone by CYP27A1 switches its activity from pro-tumor to anti-tumor

    No full text
    International audienceOncosterone (6-oxo-cholestane-3β,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or β- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3β,5α,6β-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3β,26-diol), 27H-CT ((25R)-cholestane-3β,5α,6β,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3β,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC

    The Cholesterol-5,6-Epoxide Hydrolase: A Metabolic Checkpoint in Several Diseases

    No full text
    International audienceCholesterol-5,6-epoxides (5,6-ECs) are oxysterols (OS) that have been linked to several pathologies including cancers and neurodegenerative diseases. 5,6-ECs can be produced from cholesterol by several mechanisms including reactive oxygen species, lipoperoxidation, and cytochrome P450 enzymes. 5,6-ECs exist as two different diastereoisomers: 5,6α-EC and 5,6β-EC with different metabolic fates. They can be produced as a mixture or as single products of epoxidation. The epoxide ring of 5,6α-EC and 5,6β-EC is very stable and 5,6-ECs are prone to hydration by the cholesterol-5,6-epoxide hydrolase (ChEH) to give cholestane-3β,5α,6β-triol, which can be further oxidized into oncosterone. 5,6α-EC is prone to chemical and enzymatic conjugation reactions leading to bioactive compounds such as dendrogenins, highlighting the existence of a new metabolic branch on the cholesterol pathway centered on 5,6α-EC. We will summarize in this chapter current knowledge on this pathway which is controlled by the ChEH
    corecore