276 research outputs found

    New insights into the crossroads between EMT and stemness in the context of cancer

    Get PDF
    The epithelial-mesenchymal transition (EMT) is an example of cellular plasticity, where an epithelial cell acquires a mesenchymal-like phenotype that increases its migratory and invasive properties. Stemness is the ability of stem cells to proliferate in an asymmetric way that allows them to maintain the reservoir of undifferentiated cells with stem cell identity, but also to produce new differentiated cells. Initial works revealed that activation of the EMT program in epithelial cells induces the acquisition of stem cell properties, which in the context of cancer may contribute to the appearance of tumor initiating cells (TIC). However, a number of groups have recently reported that mesenchymal-epithelial transition (MET) is required for efficient metastatic colonization and that EMT may be not necessarily associated with stemness. In this review, we summarize recent findings that extend our knowledge about the crossroads between EMT and stemness and their relevance under physiological or pathological conditions

    Genomic organization, expression analysis, and chromosomal localization of the mouse PEX3 gene encoding a peroxisomal assembly protein

    Get PDF
    The peroxin Pex3p has been identified as an integral peroxisomal membrane protein in yeast where pex3 mutants lack peroxisomal remnant structures. Although not proven in higher organisms, a role of this gene in the early peroxisome biogenesis is suggested, We report here the cDNA cloning and the genomic structure of the mouse PEX3 gene. The 2 kb cDNA encodes a polypeptide of 372 amino acids (42 kDa). The gene spans a region of 30 kb, contains 12 exons and 11 introns and is located on band A of chromosome 10, The putative promoter region exhibits characteristic housekeeping features. PEX3 expression was identified in all tissues analyzed, with the strongest signals in liver and in testis, and could not be induced by fenofibrate. The data presented may be useful for the generation of a mouse model defective in PEX3 in order to clarify the yet unknown functional impact of disturbances in early peroxisomal membrane assembly

    Physicochemical Aspects of Metal Nanoparticle Preparation

    Get PDF
    Physicochemical properties, including optical properties or catalytic activity, and biological properties of metal nanoparticles are considerably influenced by their diameter. Therefore, a tailored synthesis of metal nanoparticles represents a key topic in the field of nanotechnology, and the number of research papers, concerning this topic, has been annually growing with an arithmetic progression. Metal nanoparticles are most frequently prepared via chemical reduction of metals in ionic form from their solutions. Using this synthetic approach, tailored parameters of the particles can be achieved via the adjustment of numerous factors: difference of potentials of the metal redox system and the reducing agent redox system, pH of the reaction mixture, and its temperature. The influence of these three factors on the diameter of the prepared metal nanoparticles will be discussed in the following chapter with respect to general laws and based on numerous examples from research practice

    Ferric Reducing Antioxidant Power and Square Wave Voltammetry for Assay of Low Molecular Weight Antioxidants in Blood Plasma: Performance and Comparison of Methods

    Get PDF
    The purpose of the present study was to employ two methods—square wave voltammetry (SWV) performed on screen printed sensors and ferric reducing antioxidant power (FRAP)—as suitable tools for the assay of low-molecular-weight antioxidants (LMWAs). LMWAs were assayed by both methods and the resulting data were statistically compared. Plasma samples from five Cinereous vultures accidentally intoxicated with lead were used to represent real biological matrices with different levels of LMWAs. Blood was collected from the birds prior to and one month after treatment with Ca-EDTA. SWV resulted in two peaks. The first peak, with the potential value of 466 ± 15 mV, was recognized as ascorbic and uric acids, while the second one (743 ± 30 mV) represented glutathione, tocopherol, ascorbic acid and in a minor effect by uric acid, too. Contribution of individual antioxidants was recognized by separate assays of LMWA standards. Correlation between peaks 1 and 2 as well as the sum of the two peaks and FRAP was analysed. While peak 1 and the sum of peaks were in close correlation to FRAP results (correlation coefficient of 0.97), the relation between peak 2 and FRAP may be expressed using a correlation coefficient of 0.64. The determination of thiols by the Ellman assay confirmed the accuracy of SWV. Levels of glutathione and other similar structures were stable in the chosen model and it may be concluded that SWV is appropriate for assay of LMWAs in plasma samples. The methods employed in the study were advantageous in minimal sample volume consumption and fast acquisition of results

    Resminostat induces changes in epithelial plasticity of hepatocellular carcinoma cells and sensitizes them to sorafenib-induced apoptosis

    Full text link
    Resminostat, a novel class I, IIb, and IV histone deacetylase inhibitor, was studied in advanced hepatocellular carcinoma (HCC) patients after relapse to sorafenib (SHELTER study). In this phase I/II clinical trial, combination of sorafenib and resminostat was safe and showed early signs of efficacy. However, the molecular mechanisms behind this synergism have not been explored yet. In this work, we aimed to analyze whether resminostat regulates epithelial-mesenchymal and stemness phenotype as a mechanism of sensitization to sorafenib. Three HCC cell lines with differences in their epithelial/mesenchymal characteristics were treated with resminostat and sorafenib alone, or in combination. Resminostat prevented growth and induced cell death in the HCC cells, in a time and dose dependent manner. A collaborative effect between resminostat and sorafenib was detected in the mesenchymal HCC cells, which were insensitive to sorafenib-induced apoptosis. Expression of mesenchymal-related genes was decreased in resminostat-treated HCC cells, concomitant with an increase in epithelial-related gene expression, organized tight junctions and reduced invasive growth. Moreover, resminostat down-regulated CD44 expression, coincident with decreased capacity to form colonies at low cell density

    Epithelial–Mesenchymal Transition (EMT) Induced by TGF-β in Hepatocellular Carcinoma Cells Reprograms Lipid Metabolism

    Get PDF
    (1) Background: The transforming growth factor (TGF)-β plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-β expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-β induced suppressor effects, responding to this cytokine undergoing epithelial-mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-β in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-β when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-β in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process

    Role of the Transforming Growth Factor-β in regulating hepatocellular carcinoma oxidative metabolism.

    Get PDF
    Transforming Growth Factor beta (TGF-β) induces tumor cell migration and invasion. However, its role in inducing metabolic reprogramming is poorly understood. Here we analyzed the metabolic profle of hepatocellular carcinoma (HCC) cells that show diferences in TGF-β expression. Oxygen consumption rate (OCR), extracellular acidifcation rate (ECAR), metabolomics and transcriptomics were performed. Results indicated that the switch from an epithelial to a mesenchymal/migratory phenotype in HCC cells is characterized by reduced mitochondrial respiration, without signifcant diferences in glycolytic activity. Concomitantly, enhanced glutamine anaplerosis and biosynthetic use of TCA metabolites were proved through analysis of metabolite levels, as well as metabolic fuxes from U-13C6-Glucose and U-13C5-Glutamine. This correlated with increase in glutaminase 1 (GLS1) expression, whose inhibition reduced cell migration. Experiments where TGF-β function was activated with extracellular TGF-β1 or inhibited through TGF-β receptor I silencing showed that TGF-β induces a switch from oxidative metabolism, coincident with a decrease in OCR and the upregulation of glutamine transporter Solute Carrier Family 7 Member 5 (SLC7A5) and GLS1. TGF-β also regulated the expression of key genes involved in the fux of glycolytic intermediates and fatty acid metabolism. Together, these results indicate that autocrine activation of the TGF-β pathway regulates oxidative metabolism in HCC cells

    Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis

    Get PDF
    Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the beta subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in pro-vascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in a tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.Joanna Rojek, Matthew R Tucker, Sara C Pinto, Michał Rychłowski, Małgorzata Lichocka, Hana Soukupova ... et al

    Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis

    Get PDF
    Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the β-subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in provascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab-dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule
    corecore