39 research outputs found

    Iron concentration in exhaled breath condensate decreases in ever-smokers and COPD patients

    Get PDF
    Investigation employing bronchoalveolar lavage supports both increased and decreased iron concentrations in the epithelial lining fluid (ELF) of smokers. Exhaled breath condensate (EBC) is an alternative approach to sampling the ELF. We evaluated for an association between iron homeostasis and both smoking and a diagnosis of chronic obstructive pulmonary disease (COPD) by measuring metal concentrations in EBC samples from non-smoker controls, smoker controls, and individuals diagnosed with COPD. The total number of EBC specimens was 194. EBC iron and zinc concentrations (mean ±standard error) in the total study population were 0.610 ±0.025 and 40.73 ±1.79 ppb respectively. In linear regressions, total cigarette smoking in pack years showed a significant (negative) relationship with EBC iron concentration but not with EBC zinc concentration. Iron concentrations in EBC from GOLD stage II, III, and IV patients were all significantly decreased relative to those from non-smoker and smoker controls. In contrast to iron, zinc concentrations in EBC were not significantly different than those from non-smoker and smoker controls. It is concluded that smoking decreases EBC iron concentrations and patients diagnosed with COPD have significantly lower EBC iron concentrations. These results likely reflect an increased burden of cigarette smoke particles in the lower respiratory tract of ever-smokers and patients with COPD and the capacity of components in this particle to complex iron

    Tensor polarization in elastic electron-deuteron scattering in the momentum transfer range 3.8≤Q≤4.6 fm-1

    Get PDF
    The tensor polarization of the recoil deuteron in elastic electron-deuteron scattering has been measured at the Bates Linear Accelerator Center at three values of four-momentum transfer Q=3.78, 4.22, and 4.62 fm-1, corresponding to incident electron energies of 653, 755, and 853 MeV. The scattered electrons and the recoil deuterons were detected in coincidence. The recoil deuterons were transported to a liquid hydrogen target to undergo a second scattering. The angular distribution of the d→-p scattering was measured using a polarimeter. The polarimeter was calibrated in an auxiliary experiment using a polarized deuteron beam at the Laboratoire National Saturne. A Monte Carlo procedure was used to generate interpolated calibration data because the energy spread in the deuteron energies in the Bates experiment spanned the range of deuteron energies in the calibration experiment. The extracted values of t20 are compared to predictions of different theoretical models of the electromagnetic form factors of the deuteron: nonrelativistic and relativistic nucleon-meson dynamics, Skyrme model, quark models, and perturbative quantum chromodynamics. Along with the world data the structure functions A(Q) and B(Q) are used to separate the charge monopole and charge quadrupole form factors of the deuteron. A node in the charge monopole form factor is observed at Q=4.39±0.16 fm-1

    Measurement of tensor polarization in elastic electron-deuteron scattering in the momentum-transfer range 3.8≤q≤4.6 fm-1

    Get PDF
    The tensor polarization t20 of the recoil deuteron in elastic e-d scattering has been measured for three values of four-momentum transfer, q=3.78, 4.22, and 4.62 fm-1. The data have been used to locate the first node in the charge monopole form factor of the deuteron at q=4.39±0.16 fm-1. The results for t20 are in reasonable agreement with expectations based on the nucleon-meson description of nuclear dynamic

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore