188 research outputs found

    Turnover of outer and inner membrane proteins of rat liver mitochondria

    Get PDF
    Recent reports on the properties and composition of outer and inner mitochondrial membranes suggest that outer and inner membranes of mitochondria are derived from different sources of the cell [l-3]. I

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    Mitochondria Express α7 Nicotinic Acetylcholine Receptors to Regulate Ca2+ Accumulation and Cytochrome c Release: Study on Isolated Mitochondria

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate synaptic transmission in the muscle and autonomic ganglia and regulate transmitter release in the brain. The nAChRs composed of α7 subunits are also expressed in non-excitable cells to regulate cell survival and proliferation. Up to now, functional α7 nAChRs were found exclusively on the cell plasma membrane. Here we show that they are expressed in mitochondria and regulate early pro-apoptotic events like cytochrome c release. The binding of α7-specific antibody with mouse liver mitochondria was revealed by electron microscopy. Outer membranes of mitochondria from the wild-type and ÎČ2−/− but not α7−/− mice bound α7 nAChR-specific antibody and toxins: FITC-labeled α-cobratoxin or Alexa 555-labeled α-bungarotoxin. α7 nAChR agonists (1 ”M acetylcholine, 10 ”M choline or 30 nM PNU-282987) impaired intramitochondrial Ca2+ accumulation and significantly decreased cytochrome c release stimulated with either 90 ”M CaCl2 or 0.5 mM H2O2. α7-specific antagonist methyllicaconitine (50 nM) did not affect Ca2+ accumulation in mitochondria but attenuated the effects of agonists on cytochrome c release. Inhibitor of voltage-dependent anion channel (VDAC) 4,4â€Č-diisothio-cyano-2,2â€Č-stilbene disulfonic acid (0.5 ”M) decreased cytochrome c release stimulated with apoptogens similarly to α7 nAChR agonists, and VDAC was co-captured with the α7 nAChR from mitochondria outer membrane preparation in both direct and reverse sandwich ELISA. It is concluded that α7 nAChRs are expressed in mitochondria outer membrane to regulate the VDAC-mediated Ca2+ transport and mitochondrial permeability transition

    Cytochrome P450-mediated metabolism of N-(2-methoxyphenyl)-hydroxylamine, a human metabolite of the environmental pollutants and carcinogens o-anisidine and o-nitroanisole

    Get PDF
    N-(2-methoxyphenyl)hydroxylamine is a human metabolite of the industrial and environmental pollutants and bladder carcinogens 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole). Here, we investigated the ability of hepatic microsomes from rat and rabbit to metabolize this reactive compound. We found that N-(2-methoxyphenyl)hydroxylamine is metabolized by microsomes of both species mainly to o-aminophenol and a parent carcinogen, o-anisidine, whereas 2-methoxynitrosobenzene (o-nitrosoanisole) is formed as a minor metabolite. Another N-(2-methoxyphenyl)hydroxylamine metabolite, the exact structure of which has not been identified as yet, was generated by hepatic microsomes of rabbits, but its formation by those of rats was negligible. To evaluate the role of rat hepatic microsomal cytochromes P450 (CYP) in N-(2-methoxyphenyl)hydroxylamine metabolism, we investigated the modulation of its metabolism by specific inducers of these enzymes. The results of this study show that rat hepatic CYPs of a 1A subfamily and, to a lesser extent those of a 2B subfamily, catalyze N-(2-methoxyphenyl)hydroxylamine conversion to form both its reductive metabolite, o-anisidine, and o-aminophenol. CYP2E1 is the most efficient enzyme catalyzing conversion of N-(2-methoxyphenyl)hydroxylamine to o-aminophenol

    Measurement of sulfobromophthalein uptake in isolated rat hepatocytes by a direct spectrophotometric method.

    No full text
    A spectrophotometric technique is described for the continuous recording of sulfobromophthalein uptake by isolated hepatocytes. The technique is based on the principle that sulfobromophthalein behaves as a pH-indicator and may be followed photometrically when moving from the medium at pH 7.8 into the interior of the cell. Data show that upon addition of cells to a sulfobromophthalein solution, an absorbance change can be recorded. The kinetics of the process is biphasic and the initial rate is linearly related to the amount of cells added. By this technique it was confirmed that the substrate dependence of the initial velocity of transport is a compound function including a saturable portion with an apparent Km in the mu molar region. Experiments carried out either in the presence of valinomycin or of high concentrations of potassium chloride indicate that the presence of a membrane potential opposes the entry of sulfobromophthalein into isolated hepatocytes. This finding is in agreement with previous observations in isolated plasma membrane vesicles and in liposomes reconstituted with purified bilitranslocase which indicate a rheogenic type of transport for the dye. Low concentrations of nicotinate (1.6 microM) efficiently inhibit the saturable transport. It is suggested, in addition, that the sensitivity of the transport to valinomycin could be used as an early indication of the functional integrity of cell preparations
    • 

    corecore