2 research outputs found

    Visible light positioning : a machine learning approach

    No full text
    Visible light positioning (VLP) systems have experienced substantial revolutionary progress over the past year because they can offer great positioning accuracy without needing any additional infrastructure, as conventional radio-frequency (RF)-based systems. Received signal strength (RSS)-based VLP systems are a promising approach to many indoor positioning estimation problems, but still suffer from difficulty in providing high accuracy and reliability. A potential solution to these challenges is to combine VLP systems, and machine learning (ML) approaches to enhance the position prediction accuracy in two-dimensional (2-D) spaces, or more complex problems. In this paper, we propose a ML approach to accurately predict the 2-D indoor position of a mobile receiver (eg. an automated guided vehicles-AGV), based on the measured RSS values of 4 photodiodes (PDs) forming a star architecture. We examine and evaluate the performance of different ML learners applied to the above-described problem. The proposed ML and Neural Network (NN) methods exhibit great accuracy results in predicting the 2-D coordinates of a PD-based receiver

    Music Deep Learning: Deep Learning Methods for Music Signal Processing—A Review of the State-of-the-Art

    No full text
    The discipline of Deep Learning has been recognized for its strong computational tools, which have been extensively used in data and signal processing, with innumerable promising results. Among the many commercial applications of Deep Learning, Music Signal Processing has received an increasing amount of attention over the last decade. This work reviews the most recent developments of Deep Learning in Music signal processing. Two main applications that are discussed are Music Information Retrieval, which spans a plethora of applications, and Music Generation, which can fit a range of musical styles. After a review of both topics, several emerging directions are identified for future research
    corecore