101 research outputs found

    Indirect control of flexible demand for power system applications.

    Get PDF

    Achieving the Dispatchability of Distribution Feeders through Prosumers Data Driven Forecasting and Model Predictive Control of Electrochemical Storage

    Get PDF
    We propose and experimentally validate a control strategy to dispatch the operation of a distribution feeder interfacing heterogeneous prosumers by using a grid-connected battery energy storage system (BESS) as a controllable element coupled with a minimally invasive monitoring infrastructure. It consists in a two-stage procedure: day-ahead dispatch planning, where the feeder 5-minute average power consumption trajectory for the next day of operation (called \emph{dispatch plan}) is determined, and intra-day/real-time operation, where the mismatch with respect to the \emph{dispatch plan} is corrected by applying receding horizon model predictive control (MPC) to decide the BESS charging/discharging profile while accounting for operational constraints. The consumption forecast necessary to compute the \emph{dispatch plan} and the battery model for the MPC algorithm are built by applying adaptive data driven methodologies. The discussed control framework currently operates on a daily basis to dispatch the operation of a 20~kV feeder of the EPFL university campus using a 750~kW/500~kWh lithium titanate BESS.Comment: Submitted for publication, 201

    Cloud Motion Identification Algorithms Based on All-Sky Images to Support Solar Irradiance Forecast

    Get PDF
    International audienceCloud motion is a cause of direct irradiance variations at ground level and determines significant fluctuations of PV generation. In this work, we investigate on how integrating information on clouds motion extracted from all-sky images into a time series-based forecasting tool for global horizontal irradiance (GHI) to enhance its prediction performance. We consider three different cloud motion algorithms: heuristic motion detection (HMD), particle image velocimetry (PIV), and a persistent model. The HMD method is originally proposed in this paper. It consists in choosing the cloud motion vector leading to the best cloud map prediction considering the most recent sky images. Results show that integrating the information of the predicted cloud coverage in the circumsolar area leads to a decrease of the width of the GHI prediction intervals up to 2% for prediction horizons in the range 1 to 10 minutes

    Grey-box Modelling of a Household Refrigeration Unit Using Time Series Data in Application to Demand Side Management

    Get PDF
    This paper describes the application of stochastic grey-box modeling to identify electrical power consumption-to-temperature models of a domestic freezer using experimental measurements. The models are formulated using stochastic differential equations (SDEs), estimated by maximum likelihood estimation (MLE), validated through the model residuals analysis and cross-validated to detect model over-fitting. A nonlinear model based on the reversed Carnot cycle is also presented and included in the modeling performance analysis. As an application of the models, we apply model predictive control (MPC) to shift the electricity consumption of a freezer in demand response experiments, thereby addressing the model selection problem also from the application point of view and showing in an experimental context the ability of MPC to exploit the freezer as a demand side resource (DSR).Comment: Submitted to Sustainable Energy Grids and Networks (SEGAN). Accepted for publicatio

    Optimal Provision of Concurrent Primary Frequency and Local Voltage Control from a BESS Considering Variable Capability Curves: Modelling and Experimental Assessment

    Full text link
    This paper proposes a control method for battery energy storage systems (BESSs) to provide concurrent primary frequency and local voltage regulation services. The actual variable active and reactive power capability of the converter, along with the state-of-charge of the BESS, are jointly considered by the optimal operating point calculation process within the real-time operation. The controller optimizes the provision of grid services, considering the measured grid and battery statuses and predicting the battery DC voltage as a function of the current trajectory using a three-time-constant model (TTC). A computationally-efficient algorithm is proposed to solve the formulated optimal control problem. Experimental tests validate the proposed concepts and show the effectiveness of the employed control framework on a commercial utility-scale 720 kVA/560 kWh BESS.Comment: accepted to pscc2020, [email protected]

    Computation of Ultra-Short-Term Prediction Intervals of the Power Prosumption in Active Distribution Networks

    Full text link
    Microgrids and, in general, active distribution networks require ultra-short-term prediction, i.e., for sub-second time scales, for specific control decisions. Conventional forecasting methodologies are not effective at such time scales. To address this issue, we propose a non-parametric method for computing ultra short-term prediction intervals (PIs) of the power prosumption of generic electrical-distribution networks. The method groups historical observations into clusters according to the values of influential variables. It is applied either to the original or to the differentiated power-prosumption time series. The clusters are considered statistically representative pools of future realizations of power prosumption (or its derivative). They are used to determine empirical PDFs and, by extracting the quantiles, to deliver PIs for respective arbitrary confidence levels. The models are validated a posteriori by carrying out a performance analysis that uses experimentally observed power-prosumption for different building types, thus allowing the identification of the dominant model
    • …
    corecore