3 research outputs found

    The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases

    No full text
    The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of cardiovascular pathologies. These signaling networks contribute to the development of age-related diseases, suggesting crosstalk between the development of aging and cardiovascular disease. Inhibition and/or attenuation of these signaling networks also delays the onset of disease. Therefore, a concept of targeting the signaling networks that are involved in inflammation and oxidative stress may represent a novel treatment paradigm for many types of heart disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress especially in heart failure with preserved ejection fraction and emphasize the nature of the crosstalk of these signaling processes as well as possible therapeutic implications for cardiovascular medicine

    Catheter ablation for atrial fibrillation in patients with end-stage heart failure and eligibility for heart transplantation

    No full text
    Aims Timely referrals for transplantation and left ventricular assist device (LVAD) play a key role in favourable outcomes in patients with advanced heart failure (HF). The purpose of the Catheter Ablation for atrial fibrillation in patientS with end-sTage heart faiLure and Eligibility for Heart Transplantation (CASTLE-HTx) trial is to test the hypothesis that atrial fibrillation (AF) ablation has beneficial effects on mortality and morbidity during ‘waiting time’ for heart transplantation (HTx) or to prolong the time span until LVAD implantation. Methods and Results CASTLE-HTx is a randomized evaluation of ablative treatment of AF in patients with severe left ventricular dysfunction who are candidates and eligible for HTx. The primary endpoint is the composite of all-cause mortality, worsening of HF requiring a high urgent transplantation, or LVAD implantation. The secondary study endpoints are all-cause mortality, cardiovascular mortality, cerebrovascular accidents, worsening of HF requiring unplanned hospitalization, AF burden reduction, unplanned hospitalization due to cardiovascular reason, all-cause hospitalization, quality of life, number of delivered implantable cardioverter defibrillator therapies, time to first implantable cardioverter defibrillator therapy, number of device-detected ventricular tachycardia/ventricular fibrillation episodes, left ventricular function, exercise tolerance, and percentage of right ventricular pacing. Ventricular myocardial tissue will be obtained from patients who will undergo LVAD implantation or HTx to assess the effect of catheter ablation on human HF myocardium. CASTLE-HTx will randomize 194 patients over a minimum time period of 2 years. Conclusions CASTLE-HTx will determine if AF ablation has beneficial effects on mortality in patients with end-stage HF who are eligible for HTx

    The interplay between S-glutathionylation and phosphorylation of cardiac troponin I and myosin binding protein C in end-stage human failing hearts

    No full text
    Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca2+Ca^{2+}-activated tension and Ca2+Ca^{2+} sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca2+Ca^{2+} sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure
    corecore