180 research outputs found
Research and simulation of images classification algorithm for distributed objects obtained by remote sensing of the Earth's surface
Application of ultra-wideband signals and large apertures makes it possible to obtain a sufficiently detailed radar image of a spatially distributed object at the processing unit output. But the problem of optimal classification of synthetic aperture radar (SAR) data remains relevant due to specific features of radar images. The paper describes solution of the synthesis problem for optimal SAR image classification algorithm. The optimal set of very informative and small dimension features is found and features based on the moments of SAR images are proposed. A comparative analysis of classification algorithms using various features is made, and the ratio is proposed, which can be used as the classification sign that is invariant to object shift and to specific distortions caused by the object rotation. Β© 2016 Academic Publications, Ltd
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡ ΡΠ΅Π²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π΄Π»Ρ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ
The paper focuses on the problem of the phase unwrapping in spaceborne remote-sensing interferometric synthesized aperture radar (InSAR) systems. Major unwrapping methods and techniques are considered and the modification of the inversed vortex phase field method of phase unwrapping for interferometric data processing of space-borne synthesized aperture radars is proposed. The modification includes the separation and unwrapping of the low-frequency phase only, and obtaining of the residual phase interferogram, which phase range does not exceed 1-2 ambiguity height values. This approach significantly reduces the number of phase residues and increases the processing speed. The other modification implies filter processing of the residual phase without phase unwrapping, which includes iterative separation of the low-frequency using the Gaussian filter and phase subtraction. This approach moves phase fringes to the relief inflection areas, and is similar to the minimum-cost flow unwrapping results. The computational complexity of the algorithm is proportional to the interferogram size and the number of the phase residues of the low-frequency phase interferogram. The accuracy of digital elevation models obtained by the algorithm was estimated using the ALOS PALSAR radar data and the reference altitude data. The results show, that the accuracy is compared with the minimum-cost flow method, but has the less computational complexity.Β ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° Π²ΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡ
ΡΠ΅Π²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π΄Π»Ρ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ ΠΏΡΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΄Π°Π½Π½ΡΡ
ΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΎΡΠΎΠ² Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°ΠΏΠ΅ΡΡΡΡΠΎΠΉ. ΠΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π² ΡΠ΅Π±Ρ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΠ΅ Π½ΠΈΠ·ΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ, ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ ΠΈ Π΅Π΅ ΡΠΈΠ»ΡΡΡΠΎΠ²ΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠ΅Π»ΡΠ΅ΡΠ° Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ALOS PALSAR Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π»ΠΎΠ½Π½ΡΡ
Π²ΡΡΠΎΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ½ΠΎΡΡΠΈ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°ΠΌΠΈ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ.Π‘ΠΎΡΠ½ΠΎΠ²ΡΠΊΠΈΠΉ Π. Π. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡ
ΡΠ΅Π²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π΄Π»Ρ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ. Ural Radio Engineering Journal. 2021;5(3):239β257. DOI: 10.15826/urej.2021.5.3.003
ΠΠ΅Π΄ΠΎΠ²Π°Ρ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠ°: ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΡ ΡΠΈΡΠ½ΠΎΠ²ΠΎ-Π»Π΅Π΄ΡΠ½ΡΡ ΠΌΠ°ΡΡΠΈΠ²ΠΎΠ² Π΄Π»Ρ Π²ΡΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ½Π΅ΡΠ³ΠΈΠΈ
The problem of the fossil fuel depletion can be solved by means of searching, developing and using of alternaβ tive energy sources. One of them is the use of thermogradient power plants, which are operating by the temβ perature difference of the ocean water near the surface and at great depths. But using of these plants is usuβ ally limited by technical issues, and energy expenditures on the rise a large volume of water from the ocean depths. These problems can be solved using the natural cold accumulated in the artificial firn-ice massifs on the surface of the Earth. The application of a long jet sprinkler system makes possible for a day to create the firn-ice massifs with a height of over 10Β meters. Relatively small number of sprinklers may be sufficient to freeze for the cold period a quantity of the firn-ice masses weighing millions of tons. Daily freezing proβ ductivity is approximately 75Β tons of ice in recalculation per 1 degree of the air negative temperature. This method provides accumulation of huge reserves of natural cold, which can be stored for a long period of time with the use of thermal insulation. When freezing the firn-ice masses at the air temperature of β15Β Β°Π‘, 1Β ton of firn requires energy of 0.5Β kWΒ·h, which is 190Β times less than it is necessary for melting 1Β ton of ice. The use of artificial firn-ice masses will accelerate the development and introduction of thermogradient power plants, and not only in the marine areas.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½ ΡΠ΅ΡΠΌΠΎΠ³ΡΠ°Π΄ΠΈΠ΅Π½ΡΠ½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± Π²ΡΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ½Π΅ΡΠ³ΠΈΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠ΅ΡΠ΅ΠΏΠ°Π΄Π° ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π²ΠΎΠ΄Ρ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΈ Π² Π³Π»ΡΠ±ΠΈΠ½Π΅ ΠΎΠΊΠ΅Π°Π½Π°, ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π΅Π³ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΡΡΠ°Π½ΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ
ΠΎΠ»ΠΎΠ΄Π°, Π°ΠΊΠΊΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π² ΡΠΈΡΠ½ΠΎΠ²ΠΎ-Π»Π΅Π΄ΡΠ½ΡΡ
ΠΌΠ°ΡΡΠΈΠ²Π°Ρ
. ΠΠ°Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π½Π°ΠΌΠΎΡΠ°ΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ°ΡΡ
ΠΎΠ΄Π° ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΡΠ½Π°. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ°Π·Π½ΠΎΠΉ ΡΠ΅ΠΏΠ»ΠΎΠΈΠ·ΠΎΠ»ΡΡΠΈΠΈ Π»Π΅Π΄ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠ²Π° Π΄Π»Ρ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΠ½ΠΈΡ
Coherence maps application for InSAR data accuracy improving
Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠ°ΡΡ ΠΊΠΎΠ³Π΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°Ρ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΎΡΠΎΠ² Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°ΠΏΠ΅ΡΡΡΡΠΎΠΉ (Π Π‘Π). ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΎΠΊΠΎΠ½ ΡΡΡΠ΅Π΄Π½Π΅Π½ΠΈΠΉ, Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ
Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π΄Π°Ρ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠ΅Π»ΡΠ΅ΡΠ° ΠΈ ΠΊΠ°ΡΡ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ΅ΠΊ ΡΠ΅Π»ΡΠ΅ΡΠ°, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΡΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ΅ΠΌΠΊΠ΅, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° ΠΌΠ°ΡΠΊΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ°ΡΡΡ ΠΊΠΎΠ³Π΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΠΉ.The paper presents the analysis of coherence maps application methods for the interferometric SAR images processing. The interferometric coherence is an important indicator of the reliability of the interferograms obtained by the interferometric synthetic aperture radar (InSAR), since the areas with low coherence values are unsuitable for processing the interferometric data. In addition, the coherence is used as a parameter of adaptive phase noise filters, and it can also be used for surface segmentation. The sizes of the averaging windows suitable for the solution of practical problems are experimentally determined. The method of accuracy increasing for the digital elevation maps and displacement maps obtained by InSAR systems based on masking the coherence map is presented. The DEM accuracy improvement in comparison with the classical estimation method is presented
InSAR Data Processing in Digital Elevation Models Creating Tasks: State-of-Art and Issues
ΠΠΎΡΡΡΠΏΠΈΠ»Π°: 10.07.2020. ΠΡΠΈΠ½ΡΡΠ° Π² ΠΏΠ΅ΡΠ°ΡΡ: 30.07.2020.Received: 10.07.2020. Accepted: 30.07.2020.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΡΠ΅ΡΡΠΎΡΠΏΠ΅ΠΊΡΠΈΠ²Π° ΠΈ ΠΎΠ±Π·ΠΎΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΡ
ΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ°Π΄ΠΈΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ, Π² Π·Π°Π΄Π°ΡΠ°Ρ
ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠ΅Π»ΡΠ΅ΡΠ°. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π²ΠΎΠΏΡΠΎΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π΅Π΅ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠΈΠ±ΠΎΠΊ ΡΠΏΠΎΡΠΎΠ±Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΡΠΎΡΠ½ΠΎΡΡΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ ΠΈ ΡΠ΅Π»ΡΠ΅ΡΠ° ΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ.The paper presents a retrospective review and current state-of-art of radar data interferometric processing techniques (InSAR) in space-based radio-electronic systems of the remote sensing of the Earth in the tasks of digital elevation models (DEM) constructing. History of InSAR systems development and trends in the development of data processing methods are considered. It is shown, that InSAR systems take their origin from radio astronomic tasks, related to the Moon and planetsβ surface investigations, carried out by the USA and the USSR in 1960th. Since 1980th the InSAR techniques are widely used for the Earth remote sensing tasks (digital elevation models creation, surface displacements detection, recognition of vegetation features, etc.), but the problems of absolute phase restoration inhibit the wide utilization of such systems in the Earth monitoring and mapping tasks, because the accuracy of digital elevation models obtained
by such systems remains disputable. The mathematical model and principles of interferometric processing of data from satellite synthetic aperture radar are reviewed in conjunction with problems of absolute phase restoration errors measurement. We demonstrate, that despite the existing diversity of interferometric algorithms (i.e. phase noise filtration algorithms, phase unwrapping algorithms), the existing ways of accuracy assessment of the obtained result implies an end-to-end DEM validation, which complicates the comparative study of InSAR processing algorithms efficiency analysis. So, the authorβs proposals for such analysis, based on reference DEM backward geocoding and error functions analysis, are reviewed. This approach allows identifying optimal values and combinations of parameters for interferometric algorithms at each processing stage, and it is applicable for remote sensing radar data obtained by different radar systems in different imaging modes
Phase noise suppression in interferometric radar data using goldstein noise filtration
The article is devoted the coherence maps utilization for the phase noise filtration using the Goldstein filter for interferometric synthesized aperture radar (InSAR) images. For the ALOS PALSAR data (FBS imaging mode), four coherence estimation techniques (classical, difference slope compensation, Fourier slope compensation, and Β«peak-FourierΒ») were researched as the Goldstein filter parameter. The filtered interferograms were compared with the reference ground control points reprojected into the radar coordinate system. It is shown that the coherence estimation method affects the quality of the phase noise suppression. Β© 2020 American Institute of Physics Inc.. All rights reserved.This work was supported by the Center of Excellence "Geoinformation technologies and geophysical data complex interpretation" of the Ural Federal University Program (Act 211 Government of the Russian Federation, contract N 02.A03.21.0006)
Investigation and modification of the inversed vortex phase field method for phase unwrapping
ΠΠΎΡΡΡΠΏΠΈΠ»Π°: 12.07.2021. ΠΡΠΈΠ½ΡΡΠ° Π² ΠΏΠ΅ΡΠ°ΡΡ: 05.08.2021.Received: 12.07.2021. Accepted: 05.08.2021.ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° Π²ΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΡ
ΡΠ΅Π²ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π΄Π»Ρ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ ΠΏΡΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΄Π°Π½Π½ΡΡ
ΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΎΡΠΎΠ² Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°ΠΏΠ΅ΡΡΡΡΠΎΠΉ. ΠΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π² ΡΠ΅Π±Ρ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΠ΅ Π½ΠΈΠ·ΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ, ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ ΠΈ Π΅Π΅ ΡΠΈΠ»ΡΡΡΠΎΠ²ΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠ΅Π»ΡΠ΅ΡΠ° Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ALOS PALSAR Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π»ΠΎΠ½Π½ΡΡ
Π²ΡΡΠΎΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ½ΠΎΡΡΠΈ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°ΠΌΠΈ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ.The paper focuses on the problem of the phase unwrapping in spaceborne remote-sensing interferometric synthesized aperture radar (InSAR) systems. Major unwrapping methods and techniques are considered and the modification of the inversed vortex phase field method of phase unwrapping for interferometric data processing of space-borne synthesized aperture radars is proposed. The modification includes the separation and unwrapping of the low-frequency phase only, and obtaining of the residual phase interferogram, which phase range does not exceed 1β2 ambiguity height values. This approach significantly reduces the number of phase residues and increases the processing speed. The other modification implies filter processing of the residual phase without phase unwrapping, which includes iterative separation of the low-frequency using the Gaussian filter and phase subtraction. This approach moves phase fringes to the relief inflection areas, and is similar to the minimum-cost flow unwrapping results.
The computational complexity of the algorithm is proportional to the interferogram size and the number of the phase residues of the lowfrequency phase interferogram. The accuracy of digital elevation models obtained by the algorithm was estimated using the ALOS PALSAR radar data and the reference altitude data. The results show, that the accuracy is compared with the minimum-cost flow method, but has less computational complexity
The problem of quality assessing for the methods of coherence maps calculation in InSAR remote sensing of the Earth data processing
Interferometric coherence is an important indicator of the quality of interferograms obtained by synthetic aperture interferometric radars (InSAR), because the areas with low coherence are not suitable for interferometric data processing. The coherence value is used as a parameter for adaptive phase noise suppression algorithms. It can also be used for surface classification tasks. The paper investigates the problem of the coherence estimate reducing under the influence of the topographic phase slope and considers ways to reduce the impact of the slope on the estimate value. The paper presents a comparative efficiency analysis of four methods for coherence maps calculation used for the phase noise suppression on the interferograms by a spectral adaptive filter in interferometric data processing for the Earth's remote sensing space radar ALOS PALSAR. Β© Published under licence by IOP Publishing Ltd
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠ½Π΅ΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π° Π½Π° ΠΎΡ Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ Π»Π΅Π΄Π½ΠΈΠΊΠ° ΠΠΎΡΡΠΎΡΠ½ΡΠΉ ΠΡΡΠ½ΡΡΠΎΡΠ΄ (Π¨ΠΏΠΈΡΠ±Π΅ΡΠ³Π΅Π½)
The purpose of this research is to estimate the effect of snow cover on the store of cold of the glacier surface layer. The store of cold is a complex parameter that shows the degree of cooling of the surface layer of the glacier at the end of the cold period. This value is determined with regard for the dynamics of air temperature and snow cover, changes in the density and structure of snow, and the moisture content (water store) in the snow and firn layer by the beginning of the cold period. Analysis of data from measurements of the thermal regime of the upper 11βmeter layer of the East Grenfjord Glacier demonstrated that effect of the snow cover depth (thickness) on the store of cold is ambiguous: when the depth increases, the store of cold can both increase and decrease. For example, in the colder winter of 2013, the store of cold in the upper 11βmeter layer of the glacier was smaller than the similar value in the warmer and snowier winter of 2014. It was found that this was caused by influence of thaws and rains in the winter of 2014. They could produce changes in the structure of the snow cover: an increase in its density and hardness after freezing of ice grains, as well as increase thermal conductivity that could result in more significant cooling of the surface layer of the glacier this winter. Numerical experiments made possible to establish the dependence of the store of cold in the upper layer of the glacier on meteorological conditions and the snow depth. Calculations have shown that with the depth of 50 cm, a rise of winter air temperature by 1 Β°C reduces the store of cold, on average, by 8.5 MJ/m2, whereas with a snow thickness of 200 cm, the decrease is 6 MJ/m2. Increasing the snow thickness from 50 to 100 cm reduces the store of cold by 11 MJ/m2 at β6 Β°C, and by 15 MJ/m2 at β10 Β°C. And growth of snow thickness from 150 to 200 cm decreases the store of cold by 4 MJ/m2 at the temperature of β6 Β°C, and by 3 MJ/m2 at β10 Β°C. According to calculations for the compact snow with a thickness of 150 cm at β10 Β°C, the store of cold increases by 12% as compared with the average snow hardness. A more significant difference in the value of the store of cold happens when the stratigraphy of the snow cover is not taken into account. Note also, that when modeling the temperature regime and estimating the store of cold in the ice at the end of the cold period, one should take into account the moisture content of the upper 1-m ice layer at the end of the ablation period.ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ΅Π½Π΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ½Π΅ΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π° ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π²ΠΎΠ·Π΄ΡΡ
Π° Π½Π° Π·Π°ΠΏΠ°Ρ Ρ
ΠΎΠ»ΠΎΠ΄Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ Π»Π΅Π΄Π½ΠΈΠΊΠ° ΠΠΎΡΡΠΎΡΠ½ΡΠΉ ΠΡΡΠ½ΡΡΠΎΡΠ΄. ΠΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΠΎΠ»ΡΠΈΠ½Ρ ΡΠ½Π΅ΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π° ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡΡ ΠΊΠ°ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅, ΡΠ°ΠΊ ΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π·Π°ΠΏΠ°ΡΠ° Ρ
ΠΎΠ»ΠΎΠ΄Π°. ΠΡΠΈΡΠΈΠ½Π° ΡΡΠΎΠ³ΠΎ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠ°Π·Π½ΠΎΠΉ ΡΡΡΠ°ΡΠΈΠ³ΡΠ°ΡΠΈΠΈ ΡΠ½Π΅ΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π° ΠΈΠ·-Π·Π° ΠΎΡΡΠ΅ΠΏΠ΅β Π»Π΅ΠΉ ΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ
ΠΎΡΠ°Π΄ΠΊΠΎΠ². Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ²ΡΡΠ΄ΠΎΡΡΠΈ ΡΠ½Π΅Π³Π° ΠΈ ΡΡΡΠ°ΡΠΈΠ³ΡΠ°ΡΠΈΠΈ ΡΠ½Π΅ΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π° Π½Π° Π·Π°ΠΏΠ°Ρ Ρ
ΠΎΠ»ΠΎΠ΄Π° Π²Π΅ΡΡ
Π½Π΅Π³ΠΎ ΡΠ»ΠΎΡ Π»Π΅Π΄Π½ΠΈΠΊΠ°
- β¦