5 research outputs found

    Morphometric analysis of tumor microvessels for detection of hepatocellular carcinoma using contrast-free ultrasound imaging: A feasibility study

    Get PDF
    IntroductionA contrast-free ultrasound microvasculature imaging technique was evaluated in this study to determine whether extracting morphological features of the vascular networks in hepatic lesions can be beneficial in differentiating benign and malignant tumors (hepatocellular carcinoma (HCC) in particular).MethodsA total of 29 lesions from 22 patients were included in this work. A post-processing algorithm consisting of clutter filtering, denoising, and vessel enhancement steps was implemented on ultrasound data to visualize microvessel structures. These structures were then further characterized and quantified through additional image processing. A total of nine morphological metrics were examined to compare different groups of lesions. A two-sided Wilcoxon rank sum test was used for statistical analysis.ResultsIn the malignant versus benign comparison, six of the metrics manifested statistical significance. Comparing only HCC cases with the benign, only three of the metrics were significantly different. No statistically significant distinction was observed between different malignancies (HCC versus cholangiocarcinoma and metastatic adenocarcinoma) for any of the metrics.DiscussionObtained results suggest that designing predictive models based on such morphological characteristics on a larger sample size may prove helpful in differentiating benign from malignant liver masses

    Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules

    No full text
    Simple Summary Low specificity of ultrasound in detecting thyroid cancer warrants the development of new noninvasive modalities for the optimal characterization of thyroid nodules. Here, we present a new ultrasound-based technique, high-definition microvasculature imaging (HDMI) that provides quantitative measures of tumor microvasculature morphological features as new imaging biomarkers. This technique utilizes vessel enhancement filtering, morphological filtering, and vessel segmentation, which enable extraction of vessel morphological features including tortuosity, vessel density, diameter, Murray's deviation, microvessel fractal dimension, bifurcation angle, number of branch points, and vessel segments. Without the help of contrast agents, through the utilization of HDMI on patients with suspicious thyroid nodules, we were able to resolve tumor microvessels at size scales of a few hundred microns. We further showed that analysis of tumor vessel morphological parameters could detect thyroid malignancy with high sensitivity and specificity. These findings provide a translational rationale for the clinical implementation of quantitative HDMI for thyroid cancer detection. Low specificity in current ultrasound modalities for thyroid cancer detection necessitates the development of new imaging modalities for optimal characterization of thyroid nodules. Herein, the quantitative biomarkers of a new high-definition microvessel imaging (HDMI) were evaluated for discrimination of benign from malignant thyroid nodules. Without the help of contrast agents, this new ultrasound-based quantitative technique utilizes processing methods including clutter filtering, denoising, vessel enhancement filtering, morphological filtering, and vessel segmentation to resolve tumor microvessels at size scales of a few hundred microns and enables the extraction of vessel morphological features as new tumor biomarkers. We evaluated quantitative HDMI on 92 patients with 92 thyroid nodules identified in ultrasound. A total of 12 biomarkers derived from vessel morphological parameters were associated with pathology results. Using the Wilcoxon rank-sum test, six of the twelve biomarkers were significantly different in distribution between the malignant and benign nodules (all p < 0.01). A support vector machine (SVM)-based classification model was trained on these six biomarkers, and the receiver operating characteristic curve (ROC) showed an area under the curve (AUC) of 0.9005 (95% CI: [0.8279,0.9732]) with sensitivity, specificity, and accuracy of 0.7778, 0.9474, and 0.8929, respectively. When additional clinical data, namely TI-RADS, age, and nodule size were added to the features, model performance reached an AUC of 0.9044 (95% CI: [0.8331,0.9757]) with sensitivity, specificity, and accuracy of 0.8750, 0.8235, and 0.8400, respectively. Our findings suggest that tumor vessel morphological features may improve the characterization of thyroid nodules

    Volumetric imaging and morphometric analysis of breast tumor angiogenesis using a new contrast-free ultrasound technique: a feasibility study

    No full text
    Abstract Background There is a strong correlation between the morphological features of new tumor vessels and malignancy. However, angiogenic heterogeneity necessitates 3D microvascular data of tumor microvessels for more reliable quantification. To provide more accurate information regarding vessel morphological features and improve breast lesion characterization, we introduced a quantitative 3D high-definition microvasculature imaging (q3D-HDMI) as a new easily applicable and robust tool to morphologically characterize microvasculature networks in breast tumors using a contrast-free ultrasound-based imaging approach. Methods In this prospective study, from January 2020 through December 2021, a newly developed q3D-HDMI technique was evaluated on participants with ultrasound-identified suspicious breast lesions recommended for core needle biopsy. The morphological features of breast tumor microvessels were extracted from the q3D-HDMI. Leave-one-out cross-validation (LOOCV) was applied to test the combined diagnostic performance of multiple morphological parameters of breast tumor microvessels. Receiver operating characteristic (ROC) curves were used to evaluate the prediction performance of the generated pooled model. Results Ninety-three participants (mean age 52 ± 17 years, 91 women) with 93 breast lesions were studied. The area under the ROC curve (AUC) generated with q3D-HDMI was 95.8% (95% CI 0.901–1.000), yielding a sensitivity of 91.7% and a specificity of 98.2%, that was significantly higher than the AUC generated with the q2D-HDMI (p = 0.02). When compared to q2D-HDMI, the tumor microvessel morphological parameters obtained from q3D-HDMI provides distinctive information that increases accuracy in differentiating breast tumors. Conclusions The proposed quantitative volumetric imaging technique augments conventional breast ultrasound evaluation by increasing specificity in differentiating malignant from benign breast masses

    DataSheet_1_Morphometric analysis of tumor microvessels for detection of hepatocellular carcinoma using contrast-free ultrasound imaging: A feasibility study.docx

    No full text
    IntroductionA contrast-free ultrasound microvasculature imaging technique was evaluated in this study to determine whether extracting morphological features of the vascular networks in hepatic lesions can be beneficial in differentiating benign and malignant tumors (hepatocellular carcinoma (HCC) in particular).MethodsA total of 29 lesions from 22 patients were included in this work. A post-processing algorithm consisting of clutter filtering, denoising, and vessel enhancement steps was implemented on ultrasound data to visualize microvessel structures. These structures were then further characterized and quantified through additional image processing. A total of nine morphological metrics were examined to compare different groups of lesions. A two-sided Wilcoxon rank sum test was used for statistical analysis.ResultsIn the malignant versus benign comparison, six of the metrics manifested statistical significance. Comparing only HCC cases with the benign, only three of the metrics were significantly different. No statistically significant distinction was observed between different malignancies (HCC versus cholangiocarcinoma and metastatic adenocarcinoma) for any of the metrics.DiscussionObtained results suggest that designing predictive models based on such morphological characteristics on a larger sample size may prove helpful in differentiating benign from malignant liver masses.</p
    corecore