3,548 research outputs found

    The degenerate gravitino scenario

    Get PDF
    In this work, we explore the "degenerate gravitino" scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10^{-2} GeV. While for stau NLSP, temperatures of 4x10^9 GeV can be obtained even for splittings of order of tens of GeVs. This "degenerate gravitino" scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.Comment: 27 pages, 10 figures and 1 table. Minor typos and references fixed. Matches published version in JCAP

    Magneto-Optical Trap for Thulium Atoms

    Full text link
    Thulium atoms are trapped in a magneto-optical trap using a strong transition at 410 nm with a small branching ratio. We trap up to 7×1047\times10^{4} atoms at a temperature of 0.8(2) mK after deceleration in a 40 cm long Zeeman slower. Optical leaks from the cooling cycle influence the lifetime of atoms in the MOT which varies between 0.3 -1.5 s in our experiments. The lower limit for the leaking rate from the upper cooling level is measured to be 22(6) s1^{-1}. The repumping laser transferring the atomic population out of the F=3 hyperfine ground-state sublevel gives a 30% increase for the lifetime and the number of atoms in the trap.Comment: 4 pages, 6 figure

    Bulk Nanocrystalline Thermoelectrics Based on Bi-Sb-Te Solid Solution

    Get PDF
    A nanopowder from p-Bi-Sb-Te with particles ~ 10 nm were fabricated by the ball milling using different technological modes. Cold and hot pressing at different conditions and also SPS process were used for consolidation of the powder into a bulk nanostructure and nanocomposites. The main factors allowing slowing-down of the growth of nanograins as a result of recrystallization are the reduction of the temperature and of the duration of the pressing, the increase of the pressure, as well as addition of small value additives (like MoS2, thermally expanded graphite or fullerenes). It was reached the thermoelectric figure of merit ZT=1.22 (at 360 K) in the bulk nanostructure Bi0,4Sb1,6Te3 fabricated by SPS method. Some mechanisms of the improvement of the thermoelectric efficiency in bulk nanocrystalline semiconductors based on BixSb2-xTe3 are studied theoretically. The reduction of nanograin size can lead to improvement of the thermoelectric figure of merit. The theoretical dependence of the electric and heat conductivities and the thermoelectric power as the function of nanograins size in BixSb2-xTe3 bulk nanostructure are quite accurately correlates with the experimental data.Comment: 35 pages, 24 figures, 4 tables, 52 reference

    BRST Algebra Quantum Double and Quantization of the Proper Time Cotangent Bundle

    Full text link
    The quantum double for the quantized BRST superalgebra is studied. The corresponding R-matrix is explicitly constucted. The Hopf algebras of the double form an analytical variety with coordinates described by the canonical deformation parameters. This provides the possibility to construct the nontrivial quantization of the proper time supergroup cotangent bundle. The group-like classical limit for this quantization corresponds to the generic super Lie bialgebra of the double.Comment: 11 pages, LaTe
    corecore