5 research outputs found

    Properties of Multidrug-Resistant Mutants Derived from Heterologous Expression Chassis Strain Streptomyces albidoflavus J1074

    Get PDF
    Streptomyces albidoflavus J1074 is a popular platform to discover novel natural products via the expression of heterologous biosynthetic gene clusters (BGCs). There is keen interest in improving the ability of this platform to overexpress BGCs and, consequently, enable the purification of specialized metabolites. Mutations within gene rpoB for the β-subunit of RNA polymerase are known to increase rifampicin resistance and augment the metabolic capabilities of streptomycetes. Yet, the effects of rpoB mutations on J1074 remained unstudied, and we decided to address this issue. A target collection of strains that we studied carried spontaneous rpoB mutations introduced in the background of the other drug resistance mutations. The antibiotic resistance spectra, growth, and specialized metabolism of the resulting mutants were interrogated using a set of microbiological and analytical approaches. We isolated 14 different rpoB mutants showing various degrees of rifampicin resistance; one of them (S433W) was isolated for the first time in actinomycetes. The rpoB mutations had a major effect on antibiotic production by J1074, as evident from bioassays and LC-MS data. Our data support the idea that rpoB mutations are useful tools to enhance the ability of J1074 to produce specialized metabolites

    Prevalence of human pegivirus-1 and sequence variability of its E2 glycoprotein estimated from screening donors of fetal stem cell-containing material

    No full text
    Abstract Background Human pegivirus-1 (HPgV-1) is a member of the Flaviviridae family whose genomic organization and mode of cellular entry is similar to that of hepatitis C virus (HCV). The E2 glycoprotein of HPgV-1 is the principle mediator in the virus-cell interaction and as such harbors most of HPgV-1’s antigenic determinants. HPgV-1 persists in blood cell precursors which are increasingly used for cell therapy. Methods We studied HPgV-1 prevalence in a large cohort of females donating fetal tissues for clinical use. PCR was used for screening and estimation of viral load in viremic plasma and fetal samples. Sequence analysis was performed for portions of the 5′-untranslated and E2 regions of HPgV-1 purified from donor plasmas. Sequencing was followed by phylogenetic analysis. Results HPgV-1 was revealed in 13.7% of plasmas, 5.0% of fetal tissues, 5.4% of chorions, exceeding the prevalence of HCV in these types of samples. Transmission of HPgV-1 occurred in 25.8% of traceable mother-chorion-fetal tissues triads. For HPgV-1-positive donors, a high viral load in plasma appears to be a prerequisite for transmission. However, about one third of fetal samples acquired infection from non-viremic individuals. Sequencing of 5′-untranslated region placed most HPgV-1 samples to genotype 2a. At the same time, a portion of E2 sequence provided a much weaker support for this grouping apparently due to a higher variability. Polymorphisms were detected in important structural and antigenic motifs of E2. Conclusion HPgV-1 is efficiently transmitted to fetus at early embryonic stages. A high variability in E2 may pose a risk of generation of pathogenic subtypes. Although HPgV-1 is considered benign and no longer tested mandatorily in blood banks, the virus may have adversary effects at target niches if delivered with infected graft upon cell transplantation. This argues for the necessity of HPgV-1 testing of cell samples aimed for clinical use

    Dynamics of Telomere Length and Telomerase Activity in the Human Fetal Liver at 5–12 Weeks of Gestation

    No full text
    Fetal stem cell- (FSC-) based therapy is a promising treatment option for many diseases. The differentiation potential of FSCs is greater than that in adult stem cells, and they are more tissue-specific and have lower immunogenicity and better intrinsic homing than embryonic ones. Embryonic stem cells have higher proliferative potential than FSCs but can cause teratomas. Therefore, an evaluation of this potential represents an important biomedical challenge. Since regulation of telomere length (TL) is one mechanism governing cellular proliferation, TL is a useful surrogate marker for cell replicative potential. The prenatal dynamics of TL, however, has never been comprehensively studied. In the present study, dynamics of TL and telomerase activity in the human fetal liver during 5–12 weeks of gestation is examined. Both TL and telomerase activity were positively correlated with week of gestation. For both parameters studied, the trend to increase was evident up to 10th week of gestation. After that, they reached a plateau and remained stable. These findings indicate that telomerase activity remains high during the fetal stage, suggesting high replicative capacity of FSCs and their considerable potential for transplantation therapies. These findings, however, are preliminary only due to small sample size and require further evaluation
    corecore