215 research outputs found

    Efficient algorithms for three-dimensional axial and planar random assignment problems

    Full text link
    Beautiful formulas are known for the expected cost of random two-dimensional assignment problems, but in higher dimensions even the scaling is not known. In three dimensions and above, the problem has natural "Axial" and "Planar" versions, both of which are NP-hard. For 3-dimensional Axial random assignment instances of size nn, the cost scales as Ω(1/n)\Omega(1/n), and a main result of the present paper is a linear-time algorithm that, with high probability, finds a solution of cost O(n1+o(1))O(n^{-1+o(1)}). For 3-dimensional Planar assignment, the lower bound is Ω(n)\Omega(n), and we give a new efficient matching-based algorithm that with high probability returns a solution with cost O(nlogn)O(n \log n)

    The Satisfiability Threshold of Random 3-SAT Is at Least 3.52

    Full text link
    We prove that a random 3-SAT instance with clause-to-variable density less than 3.52 is satisfiable with high probability. The proof comes through an algorithm which selects (and sets) a variable depending on its degree and that of its complement

    The Satisfiability Threshold for k-XORSAT

    Get PDF
    We consider "unconstrained" random kk-XORSAT, which is a uniformly random system of mm linear non-homogeneous equations in F2\mathbb{F}_2 over nn variables, each equation containing k3k \geq 3 variables, and also consider a "constrained" model where every variable appears in at least two equations. Dubois and Mandler proved that m/n=1m/n=1 is a sharp threshold for satisfiability of constrained 3-XORSAT, and analyzed the 2-core of a random 3-uniform hypergraph to extend this result to find the threshold for unconstrained 3-XORSAT. We show that m/n=1m/n=1 remains a sharp threshold for satisfiability of constrained kk-XORSAT for every k3k\ge 3, and we use standard results on the 2-core of a random kk-uniform hypergraph to extend this result to find the threshold for unconstrained kk-XORSAT. For constrained kk-XORSAT we narrow the phase transition window, showing that mnm-n \to -\infty implies almost-sure satisfiability, while mn+m-n \to +\infty implies almost-sure unsatisfiability.Comment: Version 2 adds sharper phase transition result, new citation in literature survey, and improvements in presentation; removes Appendix treating k=

    Separate, measure and conquer: faster polynomial-space algorithms for Max 2-CSP and counting dominating sets

    Get PDF
    We show a method resulting in the improvement of several polynomial-space, exponential-time algorithms. The method capitalizes on the existence of small balanced separators for sparse graphs, which can be exploited for branching to disconnect an instance into independent components. For this algorithm design paradigm, the challenge to date has been to obtain improvements in worst-case analyses of algorithms, compared with algorithms that are analyzed with advanced methods, notably Measure and Conquer. Our contribution is the design of a general method to integrate the advantage from the separator-branching into Measure and Conquer, for a more precise and improved running time analysi

    Efficient algorithms for three-dimensional axial and planar random assignment problems

    Get PDF
    Beautiful formulas are known for the expected cost of random two-dimensional assignment problems, but in higher dimensions even the scaling is not known. In three dimensions and above, the problem has natural “Axial” and “Planar” versions, both of which are NP-hard. For 3-dimensional Axial random assignment instances of size n, the cost scales as Ω(1/ n), and a main result of the present paper is a linear-time algorithm that, with high probability, finds a solution of cost O(n–1+o(1)). For 3-dimensional Planar assignment, the lower bound is Ω(n), and we give a new efficient matching-based algorithm that with high probability returns a solution with cost O(n log n)

    Matchings and loose cycles in the semirandom hypergraph model

    Full text link
    We study the 2-offer semirandom 3-uniform hypergraph model on nn vertices. At each step, we are presented with 2 uniformly random vertices. We choose any other vertex, thus creating a hyperedge of size 3. We show a strategy that constructs a perfect matching, and another that constructs a loose Hamilton cycle, both succeeding asymptotically almost surely within Θ(n)\Theta(n) steps. Both results extend to ss-uniform hypergraphs. Much of the analysis is done on an auxiliary graph that is a uniform kk-out subgraph of a random bipartite graph, and this tool may be useful in other contexts

    Successive shortest paths in complete graphs with random edge weights

    Get PDF
    Consider a complete graph Kn with edge weights drawn independently from a uniform distribution U(0,1). The weight of the shortest (minimum-weight) path P1 between two given vertices is known to be ln n/n, asymptotically. Define a second-shortest path P2 to be the shortest path edge-disjoint from P1, and consider more generally the shortest path Pk edge-disjoint from all earlier paths. We show that the cost Xk of Pk converges in probability to 2k/n + ln n/n uniformly for all k ≤ n − 1. We show analogous results when the edge weights are drawn from an exponential distribution. The same results characterize the collectively cheapest k edge-disjoint paths, that is, a minimum-cost k-flow. We also obtain the expectation of Xk conditioned on the existence of Pk
    corecore