215 research outputs found
Efficient algorithms for three-dimensional axial and planar random assignment problems
Beautiful formulas are known for the expected cost of random two-dimensional
assignment problems, but in higher dimensions even the scaling is not known. In
three dimensions and above, the problem has natural "Axial" and "Planar"
versions, both of which are NP-hard. For 3-dimensional Axial random assignment
instances of size , the cost scales as , and a main result of
the present paper is a linear-time algorithm that, with high probability, finds
a solution of cost . For 3-dimensional Planar assignment, the
lower bound is , and we give a new efficient matching-based
algorithm that with high probability returns a solution with cost
The Satisfiability Threshold of Random 3-SAT Is at Least 3.52
We prove that a random 3-SAT instance with clause-to-variable density less
than 3.52 is satisfiable with high probability. The proof comes through an
algorithm which selects (and sets) a variable depending on its degree and that
of its complement
The Satisfiability Threshold for k-XORSAT
We consider "unconstrained" random -XORSAT, which is a uniformly random
system of linear non-homogeneous equations in over
variables, each equation containing variables, and also consider a
"constrained" model where every variable appears in at least two equations.
Dubois and Mandler proved that is a sharp threshold for satisfiability
of constrained 3-XORSAT, and analyzed the 2-core of a random 3-uniform
hypergraph to extend this result to find the threshold for unconstrained
3-XORSAT.
We show that remains a sharp threshold for satisfiability of
constrained -XORSAT for every , and we use standard results on the
2-core of a random -uniform hypergraph to extend this result to find the
threshold for unconstrained -XORSAT. For constrained -XORSAT we narrow
the phase transition window, showing that implies almost-sure
satisfiability, while implies almost-sure unsatisfiability.Comment: Version 2 adds sharper phase transition result, new citation in
literature survey, and improvements in presentation; removes Appendix
treating k=
Separate, measure and conquer: faster polynomial-space algorithms for Max 2-CSP and counting dominating sets
We show a method resulting in the improvement of several polynomial-space, exponential-time algorithms. The method capitalizes on the existence of small balanced separators for sparse graphs, which can be exploited for branching to disconnect an instance into independent components. For this algorithm design paradigm, the challenge to date has been to obtain improvements in worst-case analyses of algorithms, compared with algorithms that are analyzed with advanced methods, notably Measure and Conquer. Our contribution is the design of a general method to integrate the advantage from the separator-branching into Measure and Conquer, for a more precise and improved running time analysi
Efficient algorithms for three-dimensional axial and planar random assignment problems
Beautiful formulas are known for the expected cost of random two-dimensional assignment problems, but in higher dimensions even the scaling is not known. In three dimensions and above, the problem has natural “Axial” and “Planar” versions, both of which are NP-hard. For 3-dimensional Axial random assignment instances of size n, the cost scales as Ω(1/ n), and a main result of the present paper is a linear-time algorithm that, with high probability, finds a solution of cost O(n–1+o(1)). For 3-dimensional Planar assignment, the lower bound is Ω(n), and we give a new efficient matching-based algorithm that with high probability returns a solution with cost O(n log n)
Matchings and loose cycles in the semirandom hypergraph model
We study the 2-offer semirandom 3-uniform hypergraph model on vertices.
At each step, we are presented with 2 uniformly random vertices. We choose any
other vertex, thus creating a hyperedge of size 3. We show a strategy that
constructs a perfect matching, and another that constructs a loose Hamilton
cycle, both succeeding asymptotically almost surely within steps.
Both results extend to -uniform hypergraphs. Much of the analysis is done on
an auxiliary graph that is a uniform -out subgraph of a random bipartite
graph, and this tool may be useful in other contexts
Successive shortest paths in complete graphs with random edge weights
Consider a complete graph Kn with edge weights drawn independently from a uniform distribution U(0,1). The weight of the shortest (minimum-weight) path P1 between two given vertices is known to be ln n/n, asymptotically. Define a second-shortest path P2 to be the shortest path edge-disjoint from P1, and consider more generally the shortest path Pk edge-disjoint from all earlier paths. We show that the cost Xk of Pk converges in probability to 2k/n + ln n/n uniformly for all k ≤ n − 1. We show analogous results when the edge weights are drawn from an exponential distribution. The same results characterize the collectively cheapest k edge-disjoint paths, that is, a minimum-cost k-flow. We also obtain the expectation of Xk conditioned on the existence of Pk
- …