3 research outputs found

    Copper(II) Oxide Nanoparticles Embedded within a PEDOT Matrix for Hydrogen Peroxide Electrochemical Sensing

    No full text
    The aim of this study is the preparation of nanostructured copper(II) oxide-based materials (CuONPs) through a facile additive-free polyol procedure that consists of the hydrolysis of copper(II) acetate in 1,4-butane diol and its application in hydrogen peroxide sensing. The nonenzymatic electrochemical sensor for hydrogen peroxide determination was constructed by drop casting the CuONP sensing material on top of a glassy carbon electrode (GCE) modified by a layer of poly(3,4-ethylenedioxythiophene) conducting polymer (PEDOT). The PEDOT layer was prepared on GCE using the sinusoidal voltage method. The XRD pattern of the CuONPs reveals the formation of the monoclinic tenorite phase, CuO, with average crystallite sizes of 8.7 nm, while the estimated band gap from UV–vis spectroscopy is of 1.2 eV. The SEM, STEM, and BET analyses show the formation of quasi-prismatic microaggregates of nanoparticles, with dimensions ranging from 1 µm up to ca. 200 µm, with a mesoporous structure. The developed electrochemical sensor exhibited a linear response toward H2O2 in the concentration range from 0.04 to 10 mM, with a low detection limit of 8.5 μM of H2O2. Furthermore, the obtained sensor possessed an excellent anti-interference capability in H2O2 determination in the presence of interfering compounds such as KNO3 and KNO2

    Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions

    No full text
    The corrosion resistance of two cast CoCr-based alloys with different amounts of chromium and with different alloying elements in the bulk composition of the alloy was assessed. In this study, we investigated the corrosion behavior of Co21Cr8Mo7W and Co29Cr7W by open-circuit potential (OCP), potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS) in 0.1 M phosphate buffer solution (PBS) at 37 °C with long immersion times. After 1000 h of immersion, the corrosion current density (icor), estimated from anodic polarization tests, was lower for the Co21Cr8Mo7W (i.e., 49 nA cm−2) alloy compared to the Co29Cr7W alloy (180 nA cm−2). As regards the corrosion potential (Ecor), a greater value was observed for Co21Cr8Mo7W (i.e., −59 mV vs. Ag/AgCl) compared to Co29Cr7W (i.e., −114 mV vs. Ag/AgCl). Microstructure analysis before and after immersion revealed the formation of a more compact passive film on the Co21Cr8Mo7W alloy, suggesting superior corrosion resistance compared to Co29Cr7W. These findings suggest better corrosion resistance for the film formed on the alloy containing lower amounts of Cr and two alloying elements, Mo and W. These results are promising in terms of medical applications because they open the door to new strategies for obtaining alloys with lower chromium content and with more protective anti-corrosion properties

    A Sensitive Electrochemical Sensor Based on Sonogel-Carbon Material Enriched with Gold Nanoparticles for Melatonin Determination

    Get PDF
    In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy
    corecore