2,693 research outputs found

    Quantum N=2 super W3(2)W_3^{(2)} Algebra In Superspace

    Full text link
    We discuss the N=2 extension of Polyakov-Bershadsky W3(2)W_3^{(2)} algebra with the generic central charge, cc, at the quantum level in superspace. It contains, in addition to the spin 1 N=2 stress tensor, the spins 1/2,21/2, 2 bosonic and spins 1/2,21/2, 2 fermionic supercurrents satisfying the first class nonlinear chiral constraints. In the cc \to \infty limit, the ``classical'' N=2 W3(2)W_3^{(2)} algebra is recovered.Comment: 8 pages, LaTeX, name of the first author extende

    An automatic technique for visual quality classification for MPEG-1 video

    Get PDF
    The Centre for Digital Video Processing at Dublin City University developed Fischlar [1], a web-based system for recording, analysis, browsing and playback of digitally captured television programs. One major issue for Fischlar is the automatic evaluation of video quality in order to avoid processing and storage of corrupted data. In this paper we propose an automatic classification technique that detects the video content quality in order to provide a decision criterion for the processing and storage stages

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    Associating low-level features with semantic concepts using video objects and relevance feedback

    Get PDF
    The holy grail of multimedia indexing and retrieval is developing algorithms capable of imitating human abilities in distinguishing and recognising semantic concepts within the content, so that retrieval can be based on ”real world” concepts that come naturally to users. In this paper, we discuss an approach to using segmented video objects as the midlevel connection between low-level features and semantic concept description. In this paper, we consider a video object as a particular instance of a semantic concept and we model the semantic concept as an average representation of its instances. A system supporting object-based search through a test corpus is presented that allows matching presegmented objects based on automatically extracted lowlevel features. In the system, relevance feedback is employed to drive the learning of the semantic model during a regular search process

    QIMERA: a software platform for video object segmentation and tracking

    Get PDF
    In this paper we present an overview of an ongoing collaborative project in the field of video object segmentation and tracking. The objective of the project is to develop a flexible modular software architecture that can be used as test-bed for segmentation algorithms. The background to the project is described, as is the first version of the software system itself. Some sample results for the first segmentation algorithm developed using the system are presented and directions for future work are discussed

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signi¯cant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation

    Topological methods for searching barriers and reaction paths

    Full text link
    We present a family of algorithms for the fast determination of reaction paths and barriers in phase space and the computation of the corresponding rates. The method requires the reaction times be large compared to the microscopic time, irrespective of the origin - energetic, entropic, cooperative - of the timescale separation. It lends itself to temperature cycling as in simulated annealing and to activation-relaxation routines. The dynamics is ultimately based on supersymmetry methods used years ago to derive Morse theory. Thus, the formalism automatically incorporates all relevant topological information.Comment: 4 pages, 4 figures, RevTex
    corecore