11 research outputs found

    Sintering and mechanical properties of cemented carbides based on tungsten carbide and multicomponent metallic alloys.

    Get PDF
    Cemented carbides are composite materials used in a wide variety of applications requiring the right combination of mechanical strength and wear resistance under harsh environments (i.e. metal cutting and shaping, civil engineering, mining, valves for the chemical industry, etc). The most common compositions comprise tungsten carbide grains bonded with a cobalt based metallic matrix. The reason is twofold. On the one hand, WC-Co materials are relatively easy to sinter to full density state with the adequate processing methodology and, on the other, a wide range of useful properties can be obtained by changing the WC grain size and the WC/Co ratio. Nevertheless, the use and availability of cobalt are presently jeopardized by both its new classification as toxic substance (REACH regulations) and the growing demand of this metal for making Li-ion batteries for electrical vehicles. The present thesis is focused on studying the sintering behavior and mechanical properties of WC-metal systems in which pure cobalt is replaced by different combinations of metals. Two promising candidates have been found: WC-NiCoCrTiAl cemented carbides These materials were designed starting from WC-NiCoCr compositions with a Ni/Co ratio equal to one. The main challenge was to increase the hardness of these compositions since it is too low compared with that of WC-Co grades. This was achieved firstly by alloying the binder phase with aluminum and, afterwards, inducing gamma prime precipitation by aging treatments. Two different aluminum containing compounds were investigated in order to avoid catastrophic oxidation of aluminum during PM processing: AlN and TiAl3. The latter produced the best results concerning sinterability and precipitation hardening effects. WC-Ni-Co-Cr-Ti-Al materials were obtained in fully dense form by using HIP after sintering technique, a process compatible with industrial processing technologies like Sinter HIP. Aging experiments show that hardness peaks occur at lower temperatures as the Al content of the binder phase increases. Apart from hardness, transverse rupture strength (TRS) was also measured in selected WC-NiCoCrTiAl compositions in both as-HIPed and solution-aged conditions. Results are only 15% lower than those reported for WC-Co materials with similar WC grain sizes and WC/metal ratios. These results also suggest that, like in as-cast Ni superalloys, the properties of the binder phase would be retained at temperatures below those used in aging treatments. WC-FeNiCoCr cemented carbides WC-Fe-Ni-Co-Cr compositions were designed following an alternative approach. In this case, the aim was to obtain a metallic binder with no precipitation of free carbon or any secondary carbide (including those of chromium). This was achieved by starting from WC-Fe-Ni-Co-Cr3C2 powder mixtures with a constant proportion between Fe, Ni and Co equal to 40/40/20. Chromium and carbon contents have been modified in order to find the upper and lower bounds defining the “so-called” carbon windows. In addition, shrinkage kinetics have been thoroughly studied in order to define a robust sintering process for both coarse and submicron WC powders. Results of calorimetric experiments have been used to improve the description of the W-C-Fe-Ni-Co quinary system for 40Fe-40Ni-20Co composition by means of ThermoCalc® software. In this case, mechanical tests confirmed that the values of hardness and transverse rupture strength are within tolerances of those reported for WC-Co grades with similar binder contents and WC grain sizes, provided that precipitation of undesired phases is avoided.Los carburos cementados son materiales compuestos utilizados en una amplia variedad de aplicaciones que requieren la combinación correcta de resistencia mecánica y resistencia al desgaste en entornos hostiles (es decir, corte y conformado de metales, ingeniería civil, minería, válvulas para la industria química, etc). Las composiciones más comunes comprenden granos de carburo de tungsteno unidos con una matriz metálica de cobalto. La razón es doble. Por un lado, los materiales WC-Co son relativamente fáciles de sinterizar a un estado de densidad completa con la metodología de procesamiento adecuada y, por otro lado, una amplia variedad de propiedades útiles se pueden obtener variando el tamaño de grano de WC y la relación WC/Co. Sin embargo, el uso y la disponibilidad de cobalto está actualmente en peligro tanto por su nueva clasificación como sustancia tóxica (normativa REACH) como por la creciente demanda de este metal para la fabricación de baterías de iones de litio para vehículos eléctricos. La presente tesis se centra en el estudio de la sinterización y las propiedades mecánicas de sistemas WC-metal en los que el cobalto puro es reemplazado por diferentes combinaciones de metales. Se han encontrado dos candidatos prometedores: Carburos cementados WC-NiCoCrTiAl Estos materiales fueron diseñados a partir de composiciones WC-NiCoCr con una relación Ni/Co igual a uno. El principal reto fue aumentar la dureza de estas composiciones ya que es muy baja en comparación con los grados WC-Co. Esto se logró en primer lugar mediante la aleación de la fase ligante con aluminio y, posteriormente, induciendo la precipitación gamma prima mediante tratamientos de envejecimiento. Se investigaron dos fuentes de aluminio distintas para evitar una oxidación catastrófica del aluminio durante el procesamiento PM: AlN y TiAl3. Este último produjo los mejores resultados en cuanto a la sinterabilidad y los efectos de endurecimiento por precipitación. Los materiales WC-Ni-Co-Cr-Ti-Al fueron obtenidos en forma totalmente densa mediante el uso de HIP después de la sinterización, un proceso compatible con tecnologías de procesamiento industrial como Sinter HIP. Los experimentos de envejecimiento muestran que la dureza alcanza su punto máximo a temperaturas más bajas a medida que aumenta el contenido de Al de la fase ligante.Además de la dureza, la resistencia a la ruptura transversal (TRS) también se midió en composiciones seleccionadas de WC-NiCoCrTiAl tanto en condiciones de HIPed como de envejecimiento en solución. Los resultados son solo el 15% más bajos que los reportados para materiales WC-Co con tamaños de grano de WC y proporciones WC/metal similares. Estos resultados sugieren también que, al igual que en las superaleaciones base Ni, las propiedades de la fase ligante se mantendrían a temperaturas inferiores a las utilizadas en los tratamientos de envejecimiento. Carburos cementados WC-FeNiCoCr Las composiciones WC-Fe-Ni-Co-Cr fueron diseñadas siguiendo un enfoque alternativo. En este caso, el objetivo era obtener un ligante metálico sin precipitación de carbono libre ni ningún carburo secundario (incluidos los de cromo). Esto se logró partiendo de mezclas en polvo WC- Fe-Ni-Co-Cr3C2 con una proporción constante entre Fe, Ni y Co igual a 40/40/20. Los contenidos en cromo y carbono han sido modificados para encontrar los límites superior e inferior que definen "las llamadas" ventanas de carbono. Además, la cinética de contracción se ha estudiado a fondo para definir un proceso robusto de sinterización para polvos de WC gruesos y submicra. Los resultados de los experimentos calorimétricos se han utilizado para mejorar la descripción del sistema quinario W-C-Fe-Ni-Co para la composición 40Fe-40Ni-20Co mediante el software ThermoCalc®. En este caso, las pruebas mecánicas confirmaron que los valores de dureza y de resistencia a la ruptura transversal están dentro de las tolerancias reportadas para los grados WC-Co con contenidos de ligante y tamaños de grano de WC similares, siempre que se evite la precipitación de fases no deseadas

    Densification of WC-Fe-Ni-Co-Cr cemented carbides processed by HIP after sintering: effect of WC powder particle size

    Get PDF
    Shrinkage, liquid formation and mass losses of WC-19 vol% FeNiCoCr alloys during sintering have been inves- tigated in compositions either with coarse or submicron WC powders. Mass losses detected by thermogravimetry are compatible with carbothermal reduction of the different oxides present in the powder mixtures. Hardness and fracture toughness of materials based on submicron WC powders are within tolerances of those reported for WC- Co materials with similar microstructures. However, fracture strength is approx. 25% lower

    Experimental and theoretical study of WC-40Fe-20Co-40Ni

    No full text
    The liquid phase formation temperatures of the quinary system W-C-Co-Fe-Ni with a ratio of Fe:Co:Ni = 40:20:40 were determined by means of DSC analysis. Besides, the experimental C-window of this system with a binder content of 14.3 ± 2 wt% is accurately defined. Based on the experimental results, a thermodynamic modelling is carried out using the CALPHAD approach. Temperature-composition sections of the W-C-Co-Fe-Ni system with different binder contents are calculated to verify the rationality of the present modelling. There is a good correlation between the experimental and calculated results showing that the experimental data can be well reproduced by the present modelling

    Sintering and mechanical properties of cemented carbides based on tungsten carbide and multicomponent metallic alloys.

    No full text
    Cemented carbides are composite materials used in a wide variety of applications requiring the right combination of mechanical strength and wear resistance under harsh environments (i.e. metal cutting and shaping, civil engineering, mining, valves for the chemical industry, etc). The most common compositions comprise tungsten carbide grains bonded with a cobalt based metallic matrix. The reason is twofold. On the one hand, WC-Co materials are relatively easy to sinter to full density state with the adequate processing methodology and, on the other, a wide range of useful properties can be obtained by changing the WC grain size and the WC/Co ratio. Nevertheless, the use and availability of cobalt are presently jeopardized by both its new classification as toxic substance (REACH regulations) and the growing demand of this metal for making Li-ion batteries for electrical vehicles. The present thesis is focused on studying the sintering behavior and mechanical properties of WC-metal systems in which pure cobalt is replaced by different combinations of metals. Two promising candidates have been found: WC-NiCoCrTiAl cemented carbides These materials were designed starting from WC-NiCoCr compositions with a Ni/Co ratio equal to one. The main challenge was to increase the hardness of these compositions since it is too low compared with that of WC-Co grades. This was achieved firstly by alloying the binder phase with aluminum and, afterwards, inducing gamma prime precipitation by aging treatments. Two different aluminum containing compounds were investigated in order to avoid catastrophic oxidation of aluminum during PM processing: AlN and TiAl3. The latter produced the best results concerning sinterability and precipitation hardening effects. WC-Ni-Co-Cr-Ti-Al materials were obtained in fully dense form by using HIP after sintering technique, a process compatible with industrial processing technologies like Sinter HIP. Aging experiments show that hardness peaks occur at lower temperatures as the Al content of the binder phase increases. Apart from hardness, transverse rupture strength (TRS) was also measured in selected WC-NiCoCrTiAl compositions in both as-HIPed and solution-aged conditions. Results are only 15% lower than those reported for WC-Co materials with similar WC grain sizes and WC/metal ratios. These results also suggest that, like in as-cast Ni superalloys, the properties of the binder phase would be retained at temperatures below those used in aging treatments. WC-FeNiCoCr cemented carbides WC-Fe-Ni-Co-Cr compositions were designed following an alternative approach. In this case, the aim was to obtain a metallic binder with no precipitation of free carbon or any secondary carbide (including those of chromium). This was achieved by starting from WC-Fe-Ni-Co-Cr3C2 powder mixtures with a constant proportion between Fe, Ni and Co equal to 40/40/20. Chromium and carbon contents have been modified in order to find the upper and lower bounds defining the “so-called” carbon windows. In addition, shrinkage kinetics have been thoroughly studied in order to define a robust sintering process for both coarse and submicron WC powders. Results of calorimetric experiments have been used to improve the description of the W-C-Fe-Ni-Co quinary system for 40Fe-40Ni-20Co composition by means of ThermoCalc® software. In this case, mechanical tests confirmed that the values of hardness and transverse rupture strength are within tolerances of those reported for WC-Co grades with similar binder contents and WC grain sizes, provided that precipitation of undesired phases is avoided.Los carburos cementados son materiales compuestos utilizados en una amplia variedad de aplicaciones que requieren la combinación correcta de resistencia mecánica y resistencia al desgaste en entornos hostiles (es decir, corte y conformado de metales, ingeniería civil, minería, válvulas para la industria química, etc). Las composiciones más comunes comprenden granos de carburo de tungsteno unidos con una matriz metálica de cobalto. La razón es doble. Por un lado, los materiales WC-Co son relativamente fáciles de sinterizar a un estado de densidad completa con la metodología de procesamiento adecuada y, por otro lado, una amplia variedad de propiedades útiles se pueden obtener variando el tamaño de grano de WC y la relación WC/Co. Sin embargo, el uso y la disponibilidad de cobalto está actualmente en peligro tanto por su nueva clasificación como sustancia tóxica (normativa REACH) como por la creciente demanda de este metal para la fabricación de baterías de iones de litio para vehículos eléctricos. La presente tesis se centra en el estudio de la sinterización y las propiedades mecánicas de sistemas WC-metal en los que el cobalto puro es reemplazado por diferentes combinaciones de metales. Se han encontrado dos candidatos prometedores: Carburos cementados WC-NiCoCrTiAl Estos materiales fueron diseñados a partir de composiciones WC-NiCoCr con una relación Ni/Co igual a uno. El principal reto fue aumentar la dureza de estas composiciones ya que es muy baja en comparación con los grados WC-Co. Esto se logró en primer lugar mediante la aleación de la fase ligante con aluminio y, posteriormente, induciendo la precipitación gamma prima mediante tratamientos de envejecimiento. Se investigaron dos fuentes de aluminio distintas para evitar una oxidación catastrófica del aluminio durante el procesamiento PM: AlN y TiAl3. Este último produjo los mejores resultados en cuanto a la sinterabilidad y los efectos de endurecimiento por precipitación. Los materiales WC-Ni-Co-Cr-Ti-Al fueron obtenidos en forma totalmente densa mediante el uso de HIP después de la sinterización, un proceso compatible con tecnologías de procesamiento industrial como Sinter HIP. Los experimentos de envejecimiento muestran que la dureza alcanza su punto máximo a temperaturas más bajas a medida que aumenta el contenido de Al de la fase ligante.Además de la dureza, la resistencia a la ruptura transversal (TRS) también se midió en composiciones seleccionadas de WC-NiCoCrTiAl tanto en condiciones de HIPed como de envejecimiento en solución. Los resultados son solo el 15% más bajos que los reportados para materiales WC-Co con tamaños de grano de WC y proporciones WC/metal similares. Estos resultados sugieren también que, al igual que en las superaleaciones base Ni, las propiedades de la fase ligante se mantendrían a temperaturas inferiores a las utilizadas en los tratamientos de envejecimiento. Carburos cementados WC-FeNiCoCr Las composiciones WC-Fe-Ni-Co-Cr fueron diseñadas siguiendo un enfoque alternativo. En este caso, el objetivo era obtener un ligante metálico sin precipitación de carbono libre ni ningún carburo secundario (incluidos los de cromo). Esto se logró partiendo de mezclas en polvo WC- Fe-Ni-Co-Cr3C2 con una proporción constante entre Fe, Ni y Co igual a 40/40/20. Los contenidos en cromo y carbono han sido modificados para encontrar los límites superior e inferior que definen "las llamadas" ventanas de carbono. Además, la cinética de contracción se ha estudiado a fondo para definir un proceso robusto de sinterización para polvos de WC gruesos y submicra. Los resultados de los experimentos calorimétricos se han utilizado para mejorar la descripción del sistema quinario W-C-Fe-Ni-Co para la composición 40Fe-40Ni-20Co mediante el software ThermoCalc®. En este caso, las pruebas mecánicas confirmaron que los valores de dureza y de resistencia a la ruptura transversal están dentro de las tolerancias reportadas para los grados WC-Co con contenidos de ligante y tamaños de grano de WC similares, siempre que se evite la precipitación de fases no deseadas

    Effect of milling conditions and binder phase content on liquid phase sintering of heat treatable WCNi-Co-Cr-Al-Ti cemented carbides

    No full text
    The binder phase of WC based cemented carbides has been alloyed by adding two different aluminium compounds, AlN and TiAl3, to mixtures comprised of WC, Ni, Co and Cr3C2 powders. A more efficient alloying effect is obtained by TiAl3 additions likely due to its higher dissolution rate during liquid phase sintering. Shrinkage and melting phenomena are strongly affected by the energy of the milling process and the amount of metallic additions. The use of higher milling rotation speed induces higher oxidation of the powder mixtures and the subsequent formation of a higher volume fraction of alumina particles after sintering. Densification and WC grain growth are hindered by increasing the Al addition. Thus, full densification of alloys with higher Al additions require the use of HIP after standard vacuum sintering cycles. As-HIPed WC-Ni-Co-Cr-Al-Ti samples present a binder phase with precipitation of gamma prime similar to that found in as-cast Ni superalloys. The size, volume fraction and morphology of these precipitates has been modified by applying a standard solution treatment (1150 °C-2 h) followed by fast air cooling and subsequent aging at 600 °C and different dwelling times. Age hardening effects have been confirmed in the composition consisting of WC-12 wt% Co-12 wt% Ni-1.7 wt% Cr3C2-5 wt% TiAl3 after 100 h at this temperature

    Effect of chromium and carbon contents on the sintering of WC-Fe-Ni-Co-Cr multicomponent alloys

    No full text
    WC-Fe-Ni-Co-Cr cemented carbides have been obtained by liquid phase sintering from WC-Fe-Ni-Co-Cr3C2 powder mixtures. Taking the 40wt%Fe-40wt%Ni-20wt.%Co alloy as a reference, new binder phases has been prepared by introducing controlled amounts of Cr and C, via Cr3C2 and C black powders respectively. As described for WC-Co-Cr materials, Cr additions are observed to reduce the eutectic temperatures of the WC-Fe-Ni-Co system. First liquids detected on heating exhibit wide temperature melting ranges, which become narrower and are displaced to higher temperatures on repeated heating and cooling cycles. Apart from the decarburization associated to the carbothermal reduction of powder oxides, this phenomenon could be also associated to the homogeneization of the chemical composition of these multicomponent binder phases, which is faster as C content decreases. Correlation between experimental melting and solidification temperature ranges and those predicted by Thermocalc (R) is better as Cr content increases. Experimental C windows, defined in this work by the absence of free C or. phases, are located at C contents higher than those estimated by Thermocalc (R). Although the 40wt.%Fe-40wt.%Ni-20wt.%Co alloy is austenitc, BCC phases are partially stabilized at low C and high Cr contents. Although these compositions are free from. phases or free C, a precipitation of Cr-rich carbides is found at the WC-metal interface. These precipitates are not observed in the alloy with 0.75 wt% Cr (i.e. 5 wt% of the nominal metal content) and 5.39 wt%C. This C content is 0.17 wt% higher than that predicted for precipitation of M7C3

    Densification of WC-Fe-Ni-Co-Cr cemented carbides processed by HIP after sintering: effect of WC powder particle size

    No full text
    Shrinkage, liquid formation and mass losses of WC-19 vol% FeNiCoCr alloys during sintering have been inves- tigated in compositions either with coarse or submicron WC powders. Mass losses detected by thermogravimetry are compatible with carbothermal reduction of the different oxides present in the powder mixtures. Hardness and fracture toughness of materials based on submicron WC powders are within tolerances of those reported for WC- Co materials with similar microstructures. However, fracture strength is approx. 25% lower

    Microstructure, mechanical properties and fracture behavior of NiCoCrTiAl and FeNiCoCr new alternative binders for WC based hardmetals

    No full text
    Hardness and fracture strength of WC-Ni-Co-Cr-Ti-Al cemented carbides have been measured at room temperature in as-HIPed and solution-aged conditions. These treatments are applied to modify the size of gamma prime precipitates, which are intrinsically formed within the metallic binder of these ceramic-metal composites during the sintering process. Compositions containing approx. 28-29 vol% metal content exhibit hardness values in the range of those reported for similar grades of WC-Co hardmetals. Optimized aluminum additions lead to materials with fracture strength values only 15% lower than those reported for the same WC-Co commercial references. These results suggest gamma prime precipitation hardening as a potential strategy for improving the performance of WC-Co materials at high temperatures. Regarding Fe-Ni-Co-Cr alloys are potential candidates for partial substitution of Co content in WC-based hardmetals. It has been investigated WC coarse grade with 15 wt%(FeNiCoCr). The Cr content has been adjusted in order to avoid the precipitation of M7C3 carbides. Within the corresponding carbon windows, fracture strength values range from 2.8 GPa to 3.0 GPa. These values are within the range of standard WC-Co grades with similar binder contents and WC grain sizes

    Reactive sintering of WC-Ni-Co-Cr-Ti-Al cemented carbides and precipitation of gamma prime in their metallic binder phases

    No full text
    Cemented carbides processed from WC-Ni-Co-Cr3C2-TiAl3 powder mixtures by HIP after sintering present a homogeneous precipitation of gamma prime in their metallic binder phases. Other reaction products include alumina precipitates and (Ti-x,W1-x)C mixed carbides. The formation of these phases is consistent with the highly exothermic reactions detected by DSC during the heating ramp of the sintering cycle. The amount of alumina and gamma prime phases present in the sintered materials depends on the oxygen content of the powder mixtures. Refinement of gamma prime precipitates depends critically on the cooling rate after HIPing. Nanoindentation experiments have confirmed the presence of age hardening effects of samples which were previously solution treated. As expected, gamma prime precipitation is induced at lower temperatures in compositions with higher Al contents in the binder phase

    An investigation into the effects of HIP after sintering of WC-ZrC-Co-Cr3C2 cemented carbides.

    No full text
    The sintering behaviour of cemented carbides based on WC-ZrC-Co-Cr3C2 powder mixtures have been analyzed by dilatometric and calorimetric methods for different cobalt contents and WC/ZrC ratios. As expected, powder oxide reduction in these compositions is mainly of carbothermic nature. However, depending on the milling conditions, some highly stable Zr-rich oxides are retained in the binder phase after sintering. Hot isostatic pressing (HIP) cycles have been successfully applied for closing residual porosity after vacuum sintering. For a fixed amount of binder phase and a WC/ZrC ratio, the hardness of these materials depends on the amount of residual porosity and WC grain growth control. The best combination of hardness and toughness is found for alloys with 8 wt%Co and WC/ZrC wt. ratios of 6.46. HIP treatments induce the formation of a compact and well adhered layer mainly comprised of Zr oxides and WC grains. The cobalt binder phase migrates from this layer towards the sample bulk likely due to the loss of wettability on these Zr rich oxides. Hot hardness is higher for the alloy with higher WC/ZrC ratio suggesting that this property depends on both the volume fraction of (ZrxW1-x)C and WC phases and their degree of contiguity
    corecore