40 research outputs found
Porcine sapovirus replication is restricted by the type I interferon response in cell culture.
Porcine sapovirus (PSaV) of the family Caliciviridae, is the only member of the genus Sapovirus with cell culture and reverse genetics systems. When combined with the piglet model, these approaches provide a system to understand the molecular basis of sapovirus pathogenesis. The replication of PSaV in cell culture is, however, restricted, displaying an absolute requirement for bile acids and producing lower levels of infectious virus than other caliciviruses. The effect of bile acids has previously been linked to a reduction in the signal transducer and activator of transcription (STAT1)-mediated signalling pathway. In the current study, we observed that even in the presence of bile acids, PSaV replication in cell culture was restricted by soluble factors produced from infected cells. This effect was at least partially due to secreted IFN because treatment of cells with recombinant porcine IFN-ÎČ resulted in significantly reduced viral replication. Moreover, IFN-mediated signalling pathways (IFN, STAT1 and the 2',5'-oligoadenylate synthetase) were activated during PSaV infection. Characterization of PSaV growth in cell lines deficient in their ability to induce or respond to IFN showed a 100-150-fold increase in infectious virus production, indicating that the primary role of bile acids was not the inactivation of the innate immune response. Furthermore, the use of IFN-deficient cell lines enabled more efficient recovery of PSaV from cDNA constructs. Overall, the highly efficient cell culture and reverse genetics system established here for PSaV highlighted the key role of the innate immune response in the restriction of PSaV infection and should greatly facilitate further molecular studies on sapovirus host-cell interactions.This research was supported by funding from the Wellcome Trust (Ref: WT097997MA), Biotechnology and Biological Sciences Research Council (Ref: BB/I012303/1) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A2A2A01004292). IG is a Wellcome senior fellow.This is the final version of the article. It first appeared from the Society for General Microbiology via http://dx.doi.org/10.1099/vir.0.071365-
Murine Norovirus: Propagation, Quantification, and Genetic Manipulation
Murine norovirus (MNV) is a positive- sense, plus- stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal- oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology. Curr. Protoc. Microbiol 33:15K.2.1- 15K.2.61. Ă© 2014 by John Wiley & Sons, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163819/1/cpmc15k02.pd
Antiviral Type I and Type III Interferon Responses in the Central Nervous System
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway
Evasion of antiviral innate immunity by Theilerâs virus L* protein
Theilerâs virus is a natural pathogen of mice. Persistent strains of this virus are responsible for a chronic infection of the spinal cord characterized by the presence of inflammation foci as well as viral and immune-mediated demyelination. These strains of TMEV encode an accessory protein translated from an alternative open reading frame overlapping the coding region of the viral polyprotein. This protein, called L*, is crucial for viral persistence in susceptible mice. Little is known about the mechanisms that allow L* protein to stimulate the persistence of TMEV in the central nervous system. Previous work indicated that the expression of L* protein increased viral replication in macrophage cell lines, likely by specifically inhibiting apoptosis in these cells. It was also suggested that L* is associated with microtubules in infected cells. However, this intracellular localization was in contradiction with preliminary observations made in our lab.
Therefore, the first part of this work was to investigate the subcellular localization of the L* protein as the knowledge of its intracellular localization might give some hint on its function during infection. We observed that L* protein is expressed as both a cytoplasmic and mitochondrial protein during infection. Biochemical analysis showed that L* is anchored in the mitochondrial outer membrane and facing the cytosol. This mitochondrial targeting is independent of viral replication and involves a non-canonical internal targeting signal.
In the course of these experiments, we observed that RNA extracted from macrophages infected with L* mutant viruses was strongly degraded as compared to RNA extracted from wild-type or mock-infected macrophages. This led us to hypothesize that L* protein could inhibit a cellular RNase, which is activated during viral infection. Infection of RNase L knock-out peritoneal macrophages demonstrated that RNA degradation was RNase L-dependent and completely inhibited by L* protein. This observation prompted us to investigate the mechanism of RNase L inhibition. Transfection of poly(I:C) or oligoadenylates in L*-expressing cells demonstrated that the inhibition of RNase L involved an effect of L* protein on either the oligoadenylates or the RNase L itself. As we observed that L* translation was required for RNase L inhibition, we cloned the murine RNase L and performed immunoprecipitation experiments that allowed us to detect an interaction between L* and RNase L in the course of infection. This interaction is species-specific as L* is not able to inhibit RNase L originating from other species, including humans. Finally, using a human/murine hybrid system the interaction between L* and the murine RNase L was shown to be direct.(SBIM 3) -- UCL, 201
The Leader Protein of Theiler's Virus Prevents the Activation of PKR.
Leader (L) proteins encoded by cardioviruses are multifunctional proteins that contribute to innate immunity evasion. L proteins of Theiler's murine encephalomyelitis virus (TMEV), Saffold virus (SAFV), and encephalomyocarditis virus (EMCV) were reported to inhibit stress granule assembly in infected cells. Here, we show that TMEV L can act at two levels in the stress granule formation pathway: on the one hand, it can inhibit sodium arsenite-induced stress granule assembly without preventing eIF2α phosphorylation and, thus, acts downstream of eIF2α; on the other hand, it can inhibit eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation and the consequent PKR-mediated eIF2α phosphorylation. Interestingly, coimmunostaining experiments revealed that PKR colocalizes with viral double-stranded RNA (dsRNA) in cells infected with L-mutant viruses but not in cells infected with the wild-type virus. Furthermore, PKR coprecipitated with dsRNA from cells infected with L-mutant viruses significantly more than from cells infected with the wild-type virus. These data strongly suggest that L blocks PKR activation by preventing the interaction between PKR and viral dsRNA. In infected cells, L also rendered PKR refractory to subsequent activation by poly(I·C). However, no interaction was observed between L and either dsRNA or PKR. Taken together, our results suggest that, unlike other viral proteins, L indirectly acts on PKR to negatively regulate its responsiveness to dsRNA. The leader (L) protein encoded by cardioviruses is a very short multifunctional protein that contributes to evasion of the host innate immune response. This protein notably prevents the formation of stress granules in infected cells. Using Theiler's virus as a model, we show that L proteins can act at two levels in the stress response pathway leading to stress granule formation, the most striking one being the inhibition of eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation. Interestingly, the leader protein appears to inhibit PKR via a novel mechanism by rendering this kinase unable to detect double-stranded RNA, its typical activator. Unlike other viral proteins, such as influenza virus NS1, the leader protein appears to interact with neither PKR nor double-stranded RNA, suggesting that it acts indirectly to trigger the inhibition of the kinase
Theiler's Virus L* Protein Is Targeted to the Mitochondrial Outer Membraneâż
The L* protein encoded by Theiler's murine encephalomyelitis virus (TMEV) is a unique example of a picornaviral protein encoded by an alternative open reading frame. This protein is an important determinant of TMEV persistence in the mouse central nervous system. We showed that in infected cells, L* is partitioned between the cytosol and the mitochondria. In mitochondria, L* is anchored in the outer membrane and exposed to the cytosol. The targeting of L* to mitochondria is independent of other viral components and likely depends on a conformational signal. L* targeting to mitochondria might involve chaperones of the Hsp70 family, as these proteins are shown to interact
Antiviral Type I and Type III Interferon Responses in the Central Nervous System.
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway
Type I interferon response in the central nervous system.
This review is dedicated to the influence of type I IFNs (also called IFN-alpha/beta) in the central nervous system (CNS). Studies in mice with type I IFN receptor or IFN-beta gene deficiency have highlighted the importance of the type I IFN system against CNS viral infections and non-viral autoimmune disorders. Direct antiviral effects of type I IFNs appear to be crucial in limiting early spread of a number of viruses in CNS tissues. Type I IFNs have also proved to be beneficial in autoimmune disorders like multiple sclerosis or experimental autoimmune encephalitis, probably through immunomodulatory effects. Increasing efforts are done to characterize IFN expression and response in the CNS: to identify type I IFN producing cells, to decipher pathways leading to type I IFN expression in those cells, and to identify responding cells. However, reversible and irreversible damages consecutive to chronic exposure of the CNS to type I IFNs underline the importance of a tightly regulated type I IFN homeostasis in this organ
Schwarzwald, Eugenie (Genia); geb. NuĂbaum
(1872 - 1940), PĂ€dagogin, Schulreformerin und Germanisti
Epigenetic Suppression of Interferon Lambda Receptor Expression Leads to Enhanced Human Norovirus Replication In Vitro.
Human norovirus (HuNoV) is the main cause of gastroenteritis worldwide, yet no therapeutics are currently available. Here, we utilize a human norovirus replicon in human gastric tumor (HGT) cells to identify host factors involved in promoting or inhibiting HuNoV replication. We observed that an interferon (IFN)-cured population of replicon-harboring HGT cells (HGT-Cured) was enhanced in their ability to replicate transfected HuNoV RNA compared to parental HGT cells, suggesting that differential gene expression in HGT-Cured cells created an environment favoring norovirus replication. Microarrays were used to identify genes differentially regulated in HGT-NV and HGT-Cured compared to parental cells. We found that IFN lambda receptor (IFNLR1) expression was highly reduced in HGT-NV and HGT-Cured cells. While all three cell lines responded to exogenous IFN-ÎČ by inducing interferon-stimulated genes, HGT-NV and HGT-Cured cells failed to respond to exogenous IFN-λ. Methylation-sensitive PCR showed that an increased methylation of the IFNLR1 promoter and inhibition of DNA methyltransferase activity partially reactivated IFNLR1 expression in HGT-NV and HGT-Cured cells, indicating that host adaptation occurred via epigenetic reprogramming. Moreover, IFNLR1 ectopic expression rescued response to IFN-λ and restricted HuNoV replication in HGT-NV cells. We conclude that type III IFN is important in inhibiting HuNoV replication in vitro and that the loss of IFNLR1 enhances replication of HuNoV. This study unravels for the first time epigenetic reprogramming of the interferon lambda receptor as a new mechanism of cellular adaptation during long-term RNA virus replication and shows that an endogenous level of interferon lambda signaling is able to control human norovirus replication.IMPORTANCE Noroviruses are one of the most widespread causes of gastroenteritis, yet no suitable therapeutics are available for their control. Moreover, to date, knowledge of the precise cellular processes that control the replication of the human norovirus remains ill defined. Recent work has highlighted the importance of type III interferon (IFN) responses in the restriction of viruses that infect the intestine. Here, we analyzed the adaptive changes required to support long-term replication of noroviruses in cell culture and found that the receptor for type III IFN is decreased in its expression. We confirmed that this decreased expression was driven by epigenetic modifications and that cells lacking the type III IFN receptor are more permissive for norovirus replication. This work provides new insights into key host-virus interactions required for the control of noroviruses and opens potential novel avenues for their therapeutic control.Cambridge Trust Cambridge-Africa PhD studentshi