1,510 research outputs found

    Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions

    Get PDF
    Anisotropic high energy density domains may be formed at early stages of ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic observables resulting from an initially created anisotropic high energy density domain. Based on our studies using a transport model we find that the initial anisotropies are reflected in the freeze-out multiplicity distribution of both pions and kaons due to secondary hadronic rescattering. The anisotropy appears to be stronger for particles at high transverse momenta. The overall kaon multiplicity increases with large fluctuations of local energy densities, while no change has been found in the pion multiplicity.Comment: Submitted to PR

    Elliptical flow -- a signature for early pressure in ultrarelativistic nucleus-nucleus collisions

    Get PDF
    Elliptical energy flow patterns in non-central Au(11.7AGeV) on Au reactions have been studied employing the RQMD model. The strength of these azimuthal asymmetries is calculated comparing the results in two different modes of RQMD (mean field and cascade). It is found that the elliptical flow which is readily observable with current experimental detectors may help to distinguish different reasonable expansion scenarios for baryon-dense matter. The final asymmetries are very sensitive to the pressure at maximum compression, because they involve a partial cancelation between early squeeze-out and subsequent flow in the reaction plane. This cancelation can be expected to occur in a broad energy region covered by the current heavy ion fixed-target programs at BNL and at CERN.Comment: 14 pages LaTeX including 3 postscript figure

    Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics

    Full text link
    Some questions arising in the application of the thermal model to hadron production in heavy ion collisions are studied. We do so by applying the thermal model of hadron production to particle yields calculated by the microscopic transport model RQMD(v2.3). We study the bias of incomplete information about the final hadronic state on the extraction of thermal parameters.It is found that the subset of particles measured typically in the experiments looks more thermal than the complete set of stable particles. The hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3) are the multistrange baryons and antibaryons. We also looked at the influence of rapidity cuts on the extraction of thermal parameters and found that they lead to different thermal parameters and larger disagreement between the RQMD yields and the thermal model.Comment: 12 pages, 2 figures, uses REVTEX, only misprint and stylistic corrections, to appear in Physical Review

    Quark-Gluon-Plasma Formation at SPS Energies?

    Get PDF
    By colliding ultrarelativistic ions, one achieves presently energy densities close to the critical value, concerning the formation of a quark-gluon-plasma. This indicates the importance of fluctuations and the necessity to go beyond the investigation of average events. Therefore, we introduce a percolation approach to model the final stage (Ď„>1\tau > 1 fm/c) of ion-ion collisions, the initial stage being treated by well-established methods, based on strings and Pomerons. The percolation approach amounts to finding high density domains, and treating them as quark-matter droplets. In this way, we have a {\bf realistic, microscopic, and Monte--Carlo based model which allows for the formation of quark matter.} We find that even at SPS energies large quark-matter droplets are formed -- at a low rate though. In other words: large quark-matter droplets are formed due to geometrical fluctuation, but not in the average event.Comment: 7 Pages, HD-TVP-94-6 (1 uuencoded figure

    Systematic Study of the Kaon to Pion Multiplicity Ratios in Heavy-Ion Collisions

    Get PDF
    We present a systematic study of the kaon to pion multiplicity ratios (K+/pi+ and K-/pi-) in heavy-ion collisions from AGS to RHIC energy using the Relativistic Quantum Molecular Dynamics (RQMD) model. The model satisfactorily describes the available experimental data on K+/pi+ and K-/pi-. Within the model, we find that the strong increase of the ratios with the number of participants is mainly due to hadronic rescattering of produced mesons with ingoing baryons and their resonances. The enhancement of K/pi in heavy-ion collisions with respect to elementary p+p interactions is larger at AGS energy than SPS energy, and decreases smoothly with bombarding energy. The total multiplicity ratios at RHIC energy are predicted by RQMD to be K+/pi+ = 0.19 and K-/pi- = 0.15.Comment: 10 pages, 8 figures, RevTeX style. A section is added to discuss effects of rope formatio

    Highly Sensitive Centrality Dependence of Elliptic Flow -- A Novel Signature of the Phase Transition in QCD

    Get PDF
    Elliptic flow of the hot, dense system which has been created in nucleus-nucleus collisions develops as a response to the initial azimuthal asymmetry of the reaction region. Here it is suggested that the magnitude of this response shows a ``kinky'' dependence on the centrality of collisions for which the system passes through a first-order or rapid transition between quark-gluon plasma and hadronic matter. We have studied the system Pb(158AGeV) on Pb employing a recent version of the transport theoretical approach RQMD and find the conjecture confirmed. The novel phase transition signature may be observable in present and forthcoming experiments at CERN-SPS and at RHIC, the BNL collider.Comment: Version as published in PRL 82 (1999) 2048, title chang

    A stopped Delta-Matter Source in Heavy Ion Collisions at 10 GeV/n

    Full text link
    We predict the formation of highly dense baryon-rich resonance matter in Au+Au collisions at AGS energies. The final pion yields show observable signs for resonance matter. The Delta(1232) resonance is predicted to be the dominant source for pions of small transverse momenta. Rescattering effects -- consecutive excitation and deexcitation of Deltas -- lead to a long apparent lifetime (> 10 fm/c) and rather large volumina (several 100 fm^3) of the Delta-matter state. Heavier baryon resonances prove to be crucial for reaction dynamics and particle production at AGS.Comment: 17 pages, 5 postscript figures, uses psfig.sty and revtex.st

    Parameterized Directed kk-Chinese Postman Problem and kk Arc-Disjoint Cycles Problem on Euler Digraphs

    Full text link
    In the Directed kk-Chinese Postman Problem (kk-DCPP), we are given a connected weighted digraph GG and asked to find kk non-empty closed directed walks covering all arcs of GG such that the total weight of the walks is minimum. Gutin, Muciaccia and Yeo (Theor. Comput. Sci. 513 (2013) 124--128) asked for the parameterized complexity of kk-DCPP when kk is the parameter. We prove that the kk-DCPP is fixed-parameter tractable. We also consider a related problem of finding kk arc-disjoint directed cycles in an Euler digraph, parameterized by kk. Slivkins (ESA 2003) showed that this problem is W[1]-hard for general digraphs. Generalizing another result by Slivkins, we prove that the problem is fixed-parameter tractable for Euler digraphs. The corresponding problem on vertex-disjoint cycles in Euler digraphs remains W[1]-hard even for Euler digraphs

    On the Equation of State of Nuclear Matter in 158A GeV Pb+Pb Collisions

    Get PDF
    Within a hydrodynamical approach we investigate the sensitivity of single inclusive momentum spectra of hadrons in 158A GeV Pb+Pb collisions to three different equations of state of nuclear matter. Two of the equations of state are based on lattice QCD results and include a phase transition to a quark-gluon plasma. The third equation of state has been extracted from the microscopic transport code RQMD under the assumption of complete local thermalization. All three equations of state provide reasonable fits to data taken by the NA44 and NA49 Collaborations. The initial conditions before the evolution of the fireballs and the space-time evolution pictures differ dramatically for the three equations of state when the same freeze-out temperature is used in all calculations. However, the softest of the equations of state results in transverse mass spectra that are too steep in the central rapidity region. We conclude that the transverse particle momenta are determined by the effective softness of the equation of state during the fireball expansion.Comment: 4 pages, including 4 figures and 2 tables. For a PostScript file of the manuscript, you can also goto http://t2.lanl.gov/schlei/eprint.htm
    • …
    corecore