1,852 research outputs found

    Tidal and nonequilibrium Casimir effects in free fall

    Get PDF
    In this work, we consider a Casimir apparatus that is put into free fall (e.g., falling into a black hole). Working in 1 + 1D, we find that two main effects occur: First, the Casimir energy density experiences a tidal effect where negative energy is pushed toward the plates and the resulting force experienced by the plates is increased. Second, the process of falling is inherently nonequilibrium and we treat it as such, demonstrating that the Casimir energy density moves back and forth between the plates after being “dropped,” with the force modulating in synchrony. In this way, the Casimir energy behaves as a classical liquid might, putting (negative) pressure on the walls as it moves about in its container. In particular, we consider this in the context of a black hole and the multiple vacua that can be achieved outside of the apparatus

    Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions

    Get PDF
    Anisotropic high energy density domains may be formed at early stages of ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic observables resulting from an initially created anisotropic high energy density domain. Based on our studies using a transport model we find that the initial anisotropies are reflected in the freeze-out multiplicity distribution of both pions and kaons due to secondary hadronic rescattering. The anisotropy appears to be stronger for particles at high transverse momenta. The overall kaon multiplicity increases with large fluctuations of local energy densities, while no change has been found in the pion multiplicity.Comment: Submitted to PR

    Elliptical flow -- a signature for early pressure in ultrarelativistic nucleus-nucleus collisions

    Get PDF
    Elliptical energy flow patterns in non-central Au(11.7AGeV) on Au reactions have been studied employing the RQMD model. The strength of these azimuthal asymmetries is calculated comparing the results in two different modes of RQMD (mean field and cascade). It is found that the elliptical flow which is readily observable with current experimental detectors may help to distinguish different reasonable expansion scenarios for baryon-dense matter. The final asymmetries are very sensitive to the pressure at maximum compression, because they involve a partial cancelation between early squeeze-out and subsequent flow in the reaction plane. This cancelation can be expected to occur in a broad energy region covered by the current heavy ion fixed-target programs at BNL and at CERN.Comment: 14 pages LaTeX including 3 postscript figure

    The relationship between particle freeze-out distributions and HBT radius parameters

    Get PDF
    The relationship between pion and kaon space-time freeze-out distributions and the HBT radius parameters in high-energy nucleus-nucleus collisions is investigated. We show that the HBT radius parameters in general do not reflect the R.M.S. deviations of the single particle production points. Instead, the HBT radius parameters are most closely related to the curvature of the two-particle space-time relative position distribution at the origin. We support our arguments by studies with a dynamical model (RQMD 2.4).Comment: RevTex, 10 pages including 3 figures. v2: Discussion of the lambda parameter has been added. PRC, in prin

    Fusion of strings vs. percolation and the transition to the quark-gluon plasma

    Get PDF
    In most of the models of hadronic collisions the number of exchanged colour strings grows with energy and atomic numbers of the projectile and target. At high string densities interaction between them should melt them into the quark-gluon plasma state. It is shown that under certain assumptions about the the string interaction, a phase transition to the quark gluon plasma indeed takes place in the system of many colour strings. It may be of the first or second order (percolation), depending on the particular mechanism of the interaction. The critical string density is about unity in both cases. The critical density may have been already reached in central Pb-Pb collisions at 158 A GeV.Comment: 16 pages, 3 Postscript figure

    Quark-Gluon-Plasma Formation at SPS Energies?

    Get PDF
    By colliding ultrarelativistic ions, one achieves presently energy densities close to the critical value, concerning the formation of a quark-gluon-plasma. This indicates the importance of fluctuations and the necessity to go beyond the investigation of average events. Therefore, we introduce a percolation approach to model the final stage (Ď„>1\tau > 1 fm/c) of ion-ion collisions, the initial stage being treated by well-established methods, based on strings and Pomerons. The percolation approach amounts to finding high density domains, and treating them as quark-matter droplets. In this way, we have a {\bf realistic, microscopic, and Monte--Carlo based model which allows for the formation of quark matter.} We find that even at SPS energies large quark-matter droplets are formed -- at a low rate though. In other words: large quark-matter droplets are formed due to geometrical fluctuation, but not in the average event.Comment: 7 Pages, HD-TVP-94-6 (1 uuencoded figure

    Systematic Study of the Kaon to Pion Multiplicity Ratios in Heavy-Ion Collisions

    Get PDF
    We present a systematic study of the kaon to pion multiplicity ratios (K+/pi+ and K-/pi-) in heavy-ion collisions from AGS to RHIC energy using the Relativistic Quantum Molecular Dynamics (RQMD) model. The model satisfactorily describes the available experimental data on K+/pi+ and K-/pi-. Within the model, we find that the strong increase of the ratios with the number of participants is mainly due to hadronic rescattering of produced mesons with ingoing baryons and their resonances. The enhancement of K/pi in heavy-ion collisions with respect to elementary p+p interactions is larger at AGS energy than SPS energy, and decreases smoothly with bombarding energy. The total multiplicity ratios at RHIC energy are predicted by RQMD to be K+/pi+ = 0.19 and K-/pi- = 0.15.Comment: 10 pages, 8 figures, RevTeX style. A section is added to discuss effects of rope formatio

    Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions

    Get PDF
    Recently reported transverse momentum distributions of strange hadrons produced in Pb(158AGeV) on Pb collisions and corresponding results from the relativistic quantum molecular dynamics (RQMD) approach are examined. We argue that the experimental observations favor a scenario in which multi-strange hadrons are formed and decouple from the system rather early at large energy densities (around 1 GeV/fm3^3). The systematics of the strange and non-strange particle spectra indicate that the observed transverse flow develops mainly in the late hadronic stages of these reactions.Comment: 4 pages, 4 figure

    Highly Sensitive Centrality Dependence of Elliptic Flow -- A Novel Signature of the Phase Transition in QCD

    Get PDF
    Elliptic flow of the hot, dense system which has been created in nucleus-nucleus collisions develops as a response to the initial azimuthal asymmetry of the reaction region. Here it is suggested that the magnitude of this response shows a ``kinky'' dependence on the centrality of collisions for which the system passes through a first-order or rapid transition between quark-gluon plasma and hadronic matter. We have studied the system Pb(158AGeV) on Pb employing a recent version of the transport theoretical approach RQMD and find the conjecture confirmed. The novel phase transition signature may be observable in present and forthcoming experiments at CERN-SPS and at RHIC, the BNL collider.Comment: Version as published in PRL 82 (1999) 2048, title chang
    • …
    corecore