1,085 research outputs found

    Neutralizing antibodies explain the poor clinical response to Interferon beta in a small proportion of patients with Multiple Sclerosis: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutralizing antibodies (NAbs) against Interferon beta (IFNβ) are reported to be associated with poor clinical response to therapy in multiple sclerosis (MS) patients. We aimed to quantify the contribution of NAbs to the sub-optimal response of IFNβ treatment.</p> <p>Methods</p> <p>We studied the prevalence of NAbs in MS patients grouped according to their clinical response to IFNβ during the treatment period. Patients were classified as: group A, developing ≥ 1 relapse after the first 6 months of therapy; group B, exhibiting confirmed disability progression after the first 6 months of therapy, with or without superimposed relapses; group C, presenting a stable disease course during therapy. A cytopathic effect assay tested the presence of NAbs in a cohort of ambulatory MS patients treated with one of the available IFNβ formulations for at least one year. NAbs positivity was defined as NAbs titre ≥ 20 TRU.</p> <p>Results</p> <p>Seventeen patients (12.1%) were NAbs positive. NAbs positivity correlated with poorer clinical response (<it>p </it>< 0.04). As expected, the prevalence of NAbs was significantly lower in Group C (2.1%) than in Group A (17.0%) and Group B (17.0%). However, in the groups of patients with a poor clinical response (A, B), NAbs positivity was found only in a small proportion of patients.</p> <p>Conclusion</p> <p>The majority of patients with poor clinical response are NAbs negative suggesting that NAbs explains only partially the sub-optimal response to IFNβ.</p

    Inexperienced clinicians can extract pathoanatomic information from MRI narrative reports with high reproducibility for use in research/quality assurance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although reproducibility in reading MRI images amongst radiologists and clinicians has been studied previously, no studies have examined the reproducibility of inexperienced clinicians in extracting pathoanatomic information from magnetic resonance imaging (MRI) narrative reports and transforming that information into quantitative data. However, this process is frequently required in research and quality assurance contexts. The purpose of this study was to examine inter-rater reproducibility (agreement and reliability) among an inexperienced group of clinicians in extracting spinal pathoanatomic information from radiologist-generated MRI narrative reports.</p> <p>Methods</p> <p>Twenty MRI narrative reports were randomly extracted from an institutional database. A group of three physiotherapy students independently reviewed the reports and coded the presence of 14 common pathoanatomic findings using a categorical electronic coding matrix. Decision rules were developed after initial coding in an effort to resolve ambiguities in narrative reports. This process was repeated a further three times using separate samples of 20 MRI reports until no further ambiguities were identified (total n = 80). Reproducibility between trainee clinicians and two highly trained raters was examined in an arbitrary coding round, with agreement measured using percentage agreement and reliability measured using unweighted Kappa (<it>k</it>). Reproducibility was then examined in another group of three trainee clinicians who had not participated in the production of the decision rules, using another sample of 20 MRI reports.</p> <p>Results</p> <p>The mean percentage agreement for paired comparisons between the initial trainee clinicians improved over the four coding rounds (97.9-99.4%), although the greatest improvement was observed after the first introduction of coding rules. High inter-rater reproducibility was observed between trainee clinicians across 14 pathoanatomic categories over the four coding rounds (agreement range: 80.8-100%; reliability range <it>k </it>= 0.63-1.00). Concurrent validity was high in paired comparisons between trainee clinicians and highly trained raters (agreement 97.8-98.1%, reliability <it>k </it>= 0.83-0.91). Reproducibility was also high in the second sample of trainee clinicians (inter-rater agreement 96.7-100.0% and reliability <it>k </it>= 0.76-1.00; intra-rater agreement 94.3-100.0% and reliability <it>k </it>= 0.61-1.00).</p> <p>Conclusions</p> <p>A high level of radiological training is not required in order to transform MRI-derived pathoanatomic information from a narrative format to a quantitative format with high reproducibility for research or quality assurance purposes.</p

    A quantum spin transducer based on nano electro-mechancial resonator arrays

    Full text link
    Implementation of quantum information processing faces the contradicting requirements of combining excellent isolation to avoid decoherence with the ability to control coherent interactions in a many-body quantum system. For example, spin degrees of freedom of electrons and nuclei provide a good quantum memory due to their weak magnetic interactions with the environment. However, for the same reason it is difficult to achieve controlled entanglement of spins over distances larger than tens of nanometers. Here we propose a universal realization of a quantum data bus for electronic spin qubits where spins are coupled to the motion of magnetized mechanical resonators via magnetic field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin-spin coupling over long distances via Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits which can be localized near the magnetized tips and can be used for the implementation of hybrid quantum computing architectures

    Generation of Novel Bone Forming Cells (Monoosteophils) from the Cathelicidin-Derived Peptide LL-37 Treated Monocytes

    Get PDF
    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair.Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK).Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis

    Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance

    Get PDF
    A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale

    In vivo Identification and Specificity assessment of mRNA markers of hypoxia in human and mouse tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor hypoxia is linked to poor prognosis, but identification and quantification of tissue hypoxia remains a challenge. The hypoxia-specificity of HIF-1α target genes in vivo has been questioned due to the confounding influence of other microenvironmental abnormalities known to affect gene expression (e.g., low pH). Here we describe a new technique that by exploiting intratumoral oxygenation heterogeneity allows us to identify and objectively rank the most robust mRNA hypoxia biomarkers.</p> <p>Methods</p> <p>Mice carrying human (FaDu<sub>dd</sub>) or murine (SCCVII) tumors were injected with the PET hypoxia tracer FAZA. Four hours post-injection tumors were removed, frozen, and crushed into milligram-sized fragments, which were transferred individually to pre-weighed tubes containing RNAlater and then weighed. For each fragment radioactivity per tissue mass and expression patterns of selected mRNA biomarkers were analyzed and compared.</p> <p>Results</p> <p>In both tumour models, fragmentation into pieces weighing 10 to 60 mg resulted in tissue fragments with highly variable relative content of hypoxic cells as evidenced by an up to 13-fold variation in FAZA radioactivity per mass of tissue. Linear regression analysis comparing FAZA retention with patterns of gene expression in individual tissue fragments revealed that CA9, GLUT1 and LOX mRNA levels were equally and strongly correlated to hypoxic extent in FaDu<sub>dd</sub>. The same link between hypoxia and gene expression profile was observed for CA9 and GLUT1, but not LOX, in SCCVII tumors. Apparent in vivo hypoxia-specificity for other putative molecular markers of tissue hypoxia was considerably weaker.</p> <p>Conclusions</p> <p>The portrayed technique allows multiple pairwise measurements of mRNA transcript levels and extent of hypoxia in individual tumors at a smallest possible volumetric scale which (by limiting averaging effects inherent to whole-tumor analysis) strengthen the conclusiveness on true hypoxia-specificity of candidate genes while limiting the required number of tumors. Among tested genes, our study identified CA9, GLUT1 and possibly LOX as highly specific biomarkers of tumor hypoxia in vivo.</p

    Identification of Phosphoglycerate Kinase 1 (PGK1) as a reference gene for quantitative gene expression measurements in human blood RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood is a convenient sample and increasingly used for quantitative gene expression measurements with a variety of diseases including chronic fatigue syndrome (CFS). Quantitative gene expression measurements require normalization of target genes to reference genes that are stable and independent from variables being tested in the experiment. Because there are no genes that are useful for all situations, reference gene selection is an essential step to any quantitative reverse transcription-PCR protocol. Many publications have described appropriate genes for a wide variety of tissues and experimental conditions, however, reference genes that may be suitable for the analysis of CFS, or human blood RNA derived from whole blood as well as isolated peripheral blood mononuclear cells (PBMCs), have not been described.</p> <p>Findings</p> <p>Literature review and analyses of our unpublished microarray data were used to narrow down the pool of candidate reference genes to six. We assayed whole blood RNA from Tempus tubes and cell preparation tube (CPT)-collected PBMC RNA from 46 subjects, and used the geNorm and NormFinder algorithms to select the most stable reference genes. <it>Phosphoglycerate kinase 1 (PGK1) </it>was one of the optimal normalization genes for both whole blood and PBMC RNA, however, additional genes differed for the two sample types; <it>Ribosomal protein large, P0 (RPLP0</it>) for PBMC RNA and <it>Peptidylprolyl isomerase B </it>(<it>PPIB) </it>for whole blood RNA. We also show that the use of a single reference gene is sufficient for normalization when the most stable candidates are used.</p> <p>Conclusions</p> <p>We have identified <it>PGK1 </it>as a stable reference gene for use with whole blood RNA and RNA derived from PBMC. When stable genes are selected it is possible to use a single gene for normalization rather than two or three. Optimal normalization will improve the ability of results from PBMC RNA to be compared with those from whole blood RNA and potentially allows comparison of gene expression results from blood RNA collected and processed by different methods with the intention of biomarker discovery. Results of this study should facilitate large-scale molecular epidemiologic studies using blood RNA as the target of quantitative gene expression measurements.</p

    Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6) mice and a trend for increased tumor incidence after stainless steel (SS) fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant) or non-carcinogenic (iron abundant) metal-containing welding fumes at the transcriptome level.</p> <p>Methods</p> <p>Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS), Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done.</p> <p>Results</p> <p>Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as <it>CCL3</it>, <it>CCL4</it>, <it>CXCL2</it>, and <it>MMP12 </it>in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as <it>S100A8</it>, <it>S100A9 </it>and <it>MMP9</it>.</p> <p>Conclusions</p> <p>Collectively, our results demonstrate that lung tumor susceptibility may predispose the A/J strain to a prolonged dysregulation of immunomodulatory genes, thereby delaying the recovery from welding fume-induced lung inflammation. Additionally, our results provide unique insight into strain- and welding fume-dependent genetic factors involved in the lung response to welding fume.</p
    corecore