26 research outputs found
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
Molecular phylogenetic analysis resolves Trisetum (Poaceae: Pooideae: Koeleriinae) polyphyletic: Evidence for a new genus, Sibirotrisetum and resurrection of Acrospelion
To investigate the evolutionary relationships among the species of Trisetum and other members of subtribe Koeleriinae, a phylogeny based on DNA sequences from four gene regions (ITS, rpl32-trnL spacer, rps16-trnK spacer, and rps16 intron) is presented. The analyses, including type species of all genera in Koeleriinae (Acrospelion, Avellinia, Cinnagrostis, Gaudinia, Koeleria, Leptophyllochloa, Limnodea, Peyritschia, Rostraria, Sphenopholis, Trisetaria, Trisetopsis, Trisetum), along with three outgroups, confirm previous indications of extensive polyphyly of Trisetum. We focus on the monophyletic Trisetum sect. Sibirica clade that we interpret here as a distinct genus, Sibirotrisetum gen. nov. We include a description of Sibirotrisetum with the following seven new combinations: Sibirotrisetum aeneum, S. bifidum, S. henryi, S. scitulum, S. sibiricum, S. sibiricum subsp. litorale, and S. turcicum; and a single new combination in Acrospelion: A. distichophyllum. Trisetum s.s. is limited to one, two or three species, pending further study
Phylogeny and biogeography of Calamagrostis (Poaceae: Pooideae: Poeae: Agrostidinae), description of a new genus, Condilorachia (Calothecinae), and expansion of Greeneochloa and Pentapogon (Echinopogoninae)
To investigate the evolutionary relationships and biogeographical history among the species of Calamagrostis and other members of subtribes Agrostidinae, Calothecinae, Echinopogoninae, and Paramochloinae, we generated a phylogeny based on DNA sequences from one nuclear ribosomal (ITS) and three plastid regions (rpl32-trnL spacer, rps16-trnK spacer, and rps16 intron). Based on our phylogeny, we identified seven species groups (clades) within Calamagrostis: the Meridionalis group comprises two species from Central and South America, the Americana group comprises species from North America, the Deyeuxia and Epigeios groups comprise species from Eurasia, the Orientalis group comprises species from East Asia, the Purpurea group comprises species from Eurasia and North America, and the Calamagrostis group comprises species from Eurasia and North America. We hypothesize that Calamagrostis originated in North America with the primary split of the Meridionalis group, followed by split between the autochthonous Americana group and two future Eurasian branches encompassing all the remaining groups, which possibly dispersed into Eurasia independently. The molecular data suggest that hybridization and genomic introgression played a prominent role in the evolutionary history of Calamagrostis. We propose a new genus, Condilorachia, segregated from Trisetum s.l., with three species from South America for which we propose new combinations: Condilorachia bulbosa, Condilorachia brasiliensis, and Condilorachia juergensii; a new combination in Greeneochloa, Greeneochloa expansa; and the subsumption of Dichelachne into Pentapogon with 20 new combinations: Pentapogon avenoides, Pentapogon brassii, Pentapogon chaseianus, Pentapogon crinita, Pentapogon densus, Pentapogon frigidus, Pentapogon gunnianus, Pentapogon hirtella, Pentapogon inaequiglumis, Pentapogon lautumia, Pentapogon micrantha, Pentapogon parva, Pentapogon quadrisetus, Pentapogon rara, Pentapogon robusta, Pentapogon scaberulus, Pentapogon sclerophyllus, Pentapogon suizanensis, Pentapogon sieberiana, and Pentapogon validus. We provide a diagnosis, description, and a key to the species of Condilorachia
A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications
We present a new worldwide phylogenetic classification of 11 506 grass species in 768 genera, 12 subfamilies, seven supertribes, 52 tribes, five supersubtribes, and 90 subtribes; and compare two phylogenetic classifications of the grass family published in 2015 (Soreng et al. and Kellogg). The subfamilies (in descending order based on the number of species) are Pooideae with 3968 species in 202 genera, 15 tribes, and 30 subtribes; Panicoideae with 3241 species in 247 genera, 13 tribes, and 19 subtribes; Bambusoideae with 1670 species in 125 genera, three tribes, and 15 subtribes; Chloridoideae with 1602 species in 124 genera, five tribes, and 26 subtribes; Aristidoideae with 367 species in three genera, and one tribe; Danthonioideae with 292 species in 19 genera, and one tribe; Micrairoideae with 184 species in eight genera, and three tribes; Oryzoideae with 115 species in 19 genera, four tribes, and two subtribes; Arundinoideae with 40 species in 14 genera, two tribes, and two subtribes; Pharoideae with 12 species in three genera, and one tribe; Puelioideae with 11 species in two genera, and two tribes; and the Anomochlooideae with four species in two genera, and two tribes. We also include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. Newly described taxa include: supertribes Melicodae and Nardodae; supersubtribes Agrostidodinae, Boutelouodinae, Gouiniodinae, Loliodinae, and Poodinae; and subtribes Echinopogoninae and Ventenatinae.We thank the National Geographic Society Committee for Research and Exploration (Grant Nos. 8848‐10, 8087‐06) for field and laboratory support, the Smithsonian Institution's Restricted Endowments Fund, the Scholarly Studies Program, Research Opportunities, Atherton Seidell Foundation, Biodiversity Surveys and Inventories Program, Small Grants Program, the Laboratory of Analytical Biology, the Missouri Botanical Garden for supporting Tropicos, and the United States Department of Agriculture, all for financial support. We would also like to acknowledge Lynn J. Gillespie, and Jeffery M. Saarela for discussions pertinent to the manuscript, and Sun Hang and Jimmy K. Triplett for providing helpful comments on the manuscript