5 research outputs found

    Identification and characterization of genes differentially expressed during arbuscular mycorrhiza development in sugarcane

    No full text
    As micorrizas arbusculares (MAs) são associações simbióticas mutualísticas entre fungos da ordem Glomales e as raízes da maioria das plantas terrestres. Os mecanismos moleculares que controlam o desenvolvimento e a eficiência da simbiose são pouco conhecidos, dificultando sua aplicação agrícola em larga escala. No entanto, a análise sistemática e em larga escala de genes expressos em raízes colonizadas por fungos micorrízicos arbusculares (FMAs) em diferentes condições ambientais poderia contribuir de forma significativa para o conhecimento da biologia dessa simbiose. O objetivo deste trabalho foi identificar genes com expressão induzida ou suprimida em raízes de cana-de-açúcar colonizadas por Glomus clarum em condições de baixo e alto fósforo (P) no substrato de cultivo, durante o desenvolvimento da simbiose. Usando hibridização subtrativa supressiva (\"Suppresive Subtractive Hybridization, SSH) foram encontrados 74 genes com expressão diferencial significativa em raízes micorrizadas de 12 semanas após inoculação (SAI). Por outra parte, um total de 386 genes foram arranjados em membranas de nylon e sua expressão diferencial avaliada por sondas sintetizadas a partir de cDNA extraído em 4 SAI e 12 SAI. A hibridização em macroarranjos mostrou na presença da micorriza acúmulo diferencial de transcritos de genes codificando proteínas putativas envolvidas no metabolismo de jasmonato (COI1) e de etileno (ET) em raízes com 4 SAI, e ácido salicílico (AS) em raízes com 12 SAI. Dos genes que apresentaram acúmulo de transcritos regulados pela micorrização foram escolhidos 12 genes: que codificam cisteina protease (meabolismo de proteínas); remorina (dinâmica celular); dehidroascorbato redutase, e proteína rica em hidroxiprolina (resposta ao estresse); duas proteína associadas a senecência; a horcolina (função não definida); COI1 (metabolismo de jasmonato); catalase, germina, glutationa (estresse oxidativo); quitinase (resposta de defesa), para analise de acúmulo de transcritos por qRT-PCR em 4, 6, 8, 10 e 12 SAI. Os resultados indicam que em etapas precoces do desenvolvimento das MAs são ativados genes que estão relacionados com a resposta ao estresse oxidativo e com metabolismo de fitohormônios, em etapas tardias esses genes mostraram diminução no acúmulo de transcritos. A análise dos padrões de expressão dos genes envolvidos no estabelecimento da simbiose poderia contribuir para elucidar os mecanismos genéticos que controlam a simbiose e poderiam facilitar a aplicação agrícola em larga escala dos FMAsArbuscular mycorrhizae (AM) are mutualistic symbiotic associations between fungi of the order Glomales and most of the terrestrial plants. The molecular mechanisms regulating AM development and efficiency are not well understood so that agricultural large scale application is so difficult. Although so many approaches are being used to the identification of differentially expressed genes in AMs, large scale analysis it must contributed to the knowledge of symbiosis molecular biology. The aim of this work was identify genes induced or suppressed in sugarcane roots colonized for G. clarum in low and high phosphorus (P) conditions, during symbiosis development. Using suppressive subtractive hybridization (SSH) was possible to detect 74 genes with differential significant expression in 12 weeks mycorrhized roots. In other hand a total of 386 genes were spotted into nylon membranes and differential expression was evaluated with probes of cDNA of 4 and 12 weeks. Macroarray hybridization shows increase of genes transcripts involved in jasmonate metabolism (COI1) and ethylene metabolism (ET) 4 weeks after inoculation, and in salycilic acid 12 weeks after inoculation. Twelve genes differentially expressed in mycorrhizal presences were choosen to analyse the expression with qRT-PCR in 4, 6, 8, 10 and 12 weeks after inoculation. A cistein protease (protein metabolism); a remorin (cellular dynamic), dehydroascorbate reductase, hidroxiproline rich protein (estress response); two proteins associated to senescence; a horcolin (unknown function); COI1 (jasmonate metabolism); catalase, germin, glutathione (oxidative estress); chitinase (defence response) were tested. The results showed that genes relationated with oxidative stress are activated in early stages of MAs development, and, in late stages these phytohormones metabolism related genes are suppressed. Patterns expression of genes involved in MAs development it must contributed to elucidate the genetics mechanisms controlling the symbiosis and it must facilitate large scale use of FMAs

    Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis

    Get PDF
    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L–1 treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.Fil: Moldes, Carlos Alberto. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lima Filho, Oscar Fontão de. Embrapa Agroindustrial Tropical - CNPAT; BrasilFil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Kiriachek, Soraya Gabriela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Molas, María Lía. Universidad Nacional de La Pampa. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tsai, Siu Mui. Universidade de Sao Paulo; Brasi

    Regulação do desenvolvimento de micorrizas arbusculares

    No full text
    corecore