8 research outputs found

    Effective technologies for noninvasive remote monitoring in heart failure

    Get PDF
    Background Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of non-invasive remote monitoring for heart failure management is unknown. Objective To examine the effect of specific technology used for non-invasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalisations. Methods A sub-analysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used and separate meta-analyses were performed. Four different types of non-invasive remote monitoring technologies were identified including structured telephone calls, videophone, interactive voice response devices and telemonitoring. Results Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (RR 0.87; 95% CI=0.75-1.01; p=0.06 and 0.62; 95% CI=0.50-0.77; p<0.0001) and heart failure-related hospitalisations (RR 0.77; 95% CI=0.68-0.87; p<0.001) and 0.75; 95% CI=0.63-0.91; p=0.003). More research data is required for videophone and interactive voice response technologies. Conclusions This sub-analysis identified that only two of the four specific technologies used for non-invasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomised controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure

    A Remote Patient Monitoring System for Congestive Heart Failure

    No full text
    Congestive heart failure (CHF) is a leading cause of death in the United States affecting approximately 670,000 individuals. Due to the prevalence of CHF related issues, it is prudent to seek out methodologies that would facilitate the prevention, monitoring, and treatment of heart disease on a daily basis. This paper describes WANDA (Weight and Activity with Blood Pressure Monitoring System); a study that leverages sensor technologies and wireless communications to monitor the health related measurements of patients with CHF. The WANDA system is a three-tier architecture consisting of sensors, web servers, and back-end databases. The system was developed in conjunction with the UCLA School of Nursing and the UCLA Wireless Health Institute to enable early detection of key clinical symptoms indicative of CHF-related decompensation. This study shows that CHF patients monitored by WANDA are less likely to have readings fall outside a healthy range. In addition, WANDA provides a useful feedback system for regulating readings of CHF patients
    corecore