2 research outputs found

    Design, Synthesis, and Structureā€“Activity Relationship Studies of a Potent PACE4 Inhibitor

    No full text
    PACE4 plays an important role in the progression of prostate cancer and is an attractive target for the development of novel inhibitor-based tumor therapies. We previously reported the design and synthesis of a novel, potent, and relatively selective PACE4 inhibitor known as a Multi-Leu (ML) peptide. In the present work, we examined the ML peptide through detailed structureā€“activity relationship studies. A variety of ML-peptide analogues modified at the P8ā€“P5 positions with leucine isomers (Nle, DLeu, and DNle) or substituted at the P1 position with arginine mimetics were tested for their inhibitory activity, specificity, stability, and antiproliferative effect. By incorporating d isomers at the P8 position or a decarboxylated arginine mimetic, we obtained analogues with an improved stability profile and excellent antiproliferative properties. The DLeu or DNle residue also has improved specificity toward PACE4, whereas specificity was reduced for a peptide modified with the arginine mimetic, such as 4-amidinobenzylamide

    Optimization of the Potency and Pharmacokinetic Properties of a Macrocyclic Ghrelin Receptor Agonist (Part I): Development of Ulimorelin (TZP-101) from Hit to Clinic

    No full text
    High-throughput screening of Tranzyme Pharmaā€™s proprietary macrocycle library using the aequorin Ca<sup>2+</sup>-bioluminescence assay against the human ghrelin receptor (GRLN) led to the discovery of novel agonists against this G-protein coupled receptor. Early hits such as <b>1</b> (<i>K</i><sub>i</sub> = 86 nM, EC<sub>50</sub> = 134 nM) though potent in vitro displayed poor pharmacokinetic properties that required optimization. While such macrocycles are not fully rule-of-five compliant, principally due to their molecular weight and clogP, optimization of their pharmacokinetic properties proved feasible largely through conformational rigidification. Extensive SAR led to the identification of <b>2</b> (<i>K</i><sub>i</sub> = 16 nM, EC<sub>50</sub> = 29 nM), also known as ulimorelin or TZP-101, which has progressed to phase III human clinical trials for the treatment of postoperative ileus. X-ray structure and detailed NMR studies indicated a rigid peptidomimetic portion in <b>2</b> that is best defined as a nonideal type-Iā€² Ī²-turn. Compound <b>2</b> is 24% orally bioavailable in both rats and monkeys. Despite its potency, in vitro and in gastric emptying studies, <b>2</b> did not induce growth hormone (GH) release in rats, thus demarcating the GH versus GI pharmacology of GRLN
    corecore