336 research outputs found

    Repurposing the Electron Transfer Reactant Phenazine Methosulfate (PMS) for the Apoptotic Elimination of Malignant Melanoma Cells through Induction of Lethal Oxidative and Mitochondriotoxic Stress

    Get PDF
    Redox-directed pharmacophores have shown potential for the apoptotic elimination of cancer cells through chemotherapeutic induction of oxidative stress. Phenazine methosulfate (PMS), a N-alkylphenazinium cation-based redox cycler, is used widely as an electron transfer reactant coupling NAD(P)H generation to the reduction of tetrazolium salts in biochemical cell viability assays. Here, we have explored feasibility of repurposing the redox cycler PMS as a superoxide generating chemotherapeutic for the pro-oxidant induction of cancer cell apoptosis. In a panel of malignant human melanoma cells (A375, G361, LOX), low micromolar concentrations of PMS (1-10 μM, 24 h) displayed pronounced apoptogenicity as detected by annexin V-ITC/propidium iodide flow cytometry, and PMS-induced cell death was suppressed by antioxidant (NAC) or pan-caspase inhibitor (zVAD-fmk) cotreatment. Gene expression array analysis in A375 melanoma cells (PMS, 10 µM; 6 h) revealed transcriptional upregulation of heat shock (HSPA6, HSPA1A), oxidative (HMOX1) and genotoxic (EGR1, GADD45A) stress responses, confirmed by immunoblot detection demonstrating upregulation of redox regulators (NRF2, HO-1, HSP70) and modulation of pro- (BAX, PUMA) and anti-apoptotic factors (Bcl-2, Mcl-1). PMS-induced oxidative stress and glutathione depletion preceded induction of apoptotic cell death. Furthermore, the mitochondrial origin of PMS-induced superoxide production was substantiated by MitoSOX-Red live cell fluorescence imaging, and PMS-induced mitochondriotoxicity (as evidenced by diminished transmembrane potential and oxygen consumption rate) was observable at early time points. After demonstrating NADPH-driven (SOD-suppressible) superoxide radical anion generation by PMS employing a chemical NBT reduction assay, PMS-induction of oxidative genotoxic stress was substantiated by quantitative Comet analysis that confirmed the introduction of formamido-pyrimidine DNA glycosylase (Fpg)-sensitive oxidative DNA lesions in A375 melanoma cells. Taken together, these data suggest feasibility of repurposing the biochemical reactant PMS as an experimental pro-oxidant targeting mitochondrial integrity and redox homeostasis for the apoptotic elimination of malignant melanoma cells.National Institutes of Health [1R01CA229418, 1R03CA230949, ES007091, ES006694]; National Institutes of Health (Arizona Cancer Center Support Grant) [CA023074]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells

    Get PDF
    Innate lymphoid cells (ILCs) were originally classified based on their cytokine profiles, placing natural killer (NK) cells and ILC1s together, but recent studies support their separation into different lineages at steady-state. However, tumors may induce NK cell conversion into ILC1-like cells that are limited to the tumor microenvironment and whether this conversion occurs beyond this environment remains unknown. Here, we describ

    Image-Based, Fiber Guiding Scaffolds: A Platform for Regenerating Tissue Interfaces

    Full text link
    In the oral and craniofacial complex, tooth loss is the most commonly acquired disfiguring injury. Among the most formidable challenges of reconstructing tooth-supporting osseous defects in the oral cavity is the regeneration of functional multi-tissue complexes involving bone, ligament, and tooth cementum. Furthermore, periodontal multi-tissue engineering with spatiotemporal orientation of the periodontal ligament (PDL) remains the most challenging obstacle for restoration of physiological loading and homeostasis. We report on the ability of a hybrid computer-designed scaffold?developed utilizing computed tomography?to predictably facilitate the regeneration and integration of dental supporting tissues. Here, we provide the protocol for rapid prototyping, manufacture, surgical implantation, and evaluation of dual-architecture scaffolds for controlling fiber orientation and facilitating morphogenesis of bone-ligament complexes. In contrast to conventional single-system methods of fibrous tissue formation, our protocol supports rigorous control of multi-compartmental scaffold architecture using computational scaffold design and manufacturing by 3D printing, as well as the evaluation of newly regenerated tissue physiology for clinical implementation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140247/1/ten.tec.2013.0619.pd

    Clathrin light chains' role in selective endocytosis influences antibody isotype switching

    Get PDF
    Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin’s role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules

    A Cross-Sectional Characterization of Insulin Resistance by Phenotype and Insulin Clamp in East Asian Americans with Type 1 and Type 2 Diabetes

    Get PDF
    Classic features of type 1 and type 2 diabetes may not apply in Asian Americans, due to shared absence of common HLA DR-DQ genotype, low prevalence of positive anti-islet antibodies and low BMI in both types of diabetes. Our objective was to characterize diabetic phenotypes in Asian Americans by clamp and clinical features.This was a cross-sectional study conducted in a referral center. Thirty East young Asian American adult volunteers (27.6±5.5 years) with type 1, type 2 diabetes or controls underwent hyperinsulinemic euglycemic clamp to assess insulin resistance and DEXA to assess adiposity.Gender, BMI, waist/hip ratio, leptin, LDL, anti-GAD, anti-IA2 antibodies and C-reactive protein were similar among three groups. Serum C-peptide, adiponectin, free fatty acid, HDL concentrations and truncal fat by DEXA, were different between diabetic groups. Glucose disposal rate by clamp was lowest in type 2 diabetes, followed by type 1 diabetes and controls (5.43±2.70, 7.62±2.59, 8.61±2.37 mg/min/kg, respectively, p = 0.001). Free fatty acid concentration universally plummeted during steady state of the clamp procedure regardless of diabetes types in all three groups. Adipocyte fatty acid binding protein in the entire cohort (r = -0.625, p = 0.04) and controls (r = -0.869, p = 0.046) correlated best with insulin resistance, independent of BMI.Type 2 diabetes in Asian Americans was associated with insulin resistance despite having low BMI as type 1 diabetes, suggesting a potential role for targeting insulin resistance apart from weight loss. Adipocyte fatty acid binding protein, strongly associated with insulin resistance, independent of adiposity in the young Asian American population, may potentially serve as a biomarker to identify at-risk individuals. Larger studies are needed to confirm this finding

    Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology

    Full text link
    It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability
    • …
    corecore