129 research outputs found

    Singular Spectrum and Recent Results on Hierarchical Operators

    Full text link
    We use trace class scattering theory to exclude the possibility of absolutely continuous spectrum in a large class of self-adjoint operators with an underlying hierarchical structure and provide applications to certain random hierarchical operators and matrices. We proceed to contrast the localizing effect of the hierarchical structure in the deterministic setting with previous results and conjectures in the random setting. Furthermore, we survey stronger localization statements truly exploiting the disorder for the hierarchical Anderson model and report recent results concerning the spectral statistics of the ultrametric random matrix ensemble

    Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO3_{3}

    Get PDF
    The two-dimensional metal forming at the interface between an oxide insulator and SrTiO3 provides new opportunities for oxide electronics. However, the quantum Hall effect, one of the most fascinating effects of electrons confined in two dimensions, remains underexplored at these complex oxide heterointerfaces. Here, we report the experimental observation of quantized Hall resistance in a SrTiO3 heterointerface based on the modulation-doped amorphous-LaAlO3_{3}/SrTiO3_{3} heterostructure, which exhibits both high electron mobility exceeding 10000 cm2^{2}/Vs and low carrier density on the order of ~1012^{12} cm−2^{-2}. Along with unambiguous Shubnikov-de Haas oscillations, the spacing of the quantized Hall resistance suggests that the interface is comprised of a single quantum well with ten parallel conducting two-dimensional subbands. This provides new insight into the electronic structure of conducting oxide interfaces and represents an important step towards designing and understanding advanced oxide devices

    Engineering Hybrid Epitaxial InAsSb/Al Nanowire Materials for Stronger Topological Protection

    Get PDF
    The combination of strong spin-orbit coupling, large gg-factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zincblende InAs1−x_{1-x}Sbx_{x} nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies \cite{winkler2016topological}. We show that the epitaxial InAsSb/Al interfaces allows for a hard induced superconducting gap and 2ee transport in Coulomb charging experiments, similar to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective gg-factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zincblende structure.Comment: 10 pages and 5 figure
    • …
    corecore