129 research outputs found
Singular Spectrum and Recent Results on Hierarchical Operators
We use trace class scattering theory to exclude the possibility of absolutely
continuous spectrum in a large class of self-adjoint operators with an
underlying hierarchical structure and provide applications to certain random
hierarchical operators and matrices. We proceed to contrast the localizing
effect of the hierarchical structure in the deterministic setting with previous
results and conjectures in the random setting. Furthermore, we survey stronger
localization statements truly exploiting the disorder for the hierarchical
Anderson model and report recent results concerning the spectral statistics of
the ultrametric random matrix ensemble
Öffentlichkeit und Evidenz- Evangelische Kirchen im öffentlichen Wettbewerb. Ein Bericht zur Lage in Deutschland
[Abstract fehlt
Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO
The two-dimensional metal forming at the interface between an oxide insulator
and SrTiO3 provides new opportunities for oxide electronics. However, the
quantum Hall effect, one of the most fascinating effects of electrons confined
in two dimensions, remains underexplored at these complex oxide
heterointerfaces. Here, we report the experimental observation of quantized
Hall resistance in a SrTiO3 heterointerface based on the modulation-doped
amorphous-LaAlO/SrTiO heterostructure, which exhibits both high
electron mobility exceeding 10000 cm/Vs and low carrier density on the
order of ~10 cm. Along with unambiguous Shubnikov-de Haas
oscillations, the spacing of the quantized Hall resistance suggests that the
interface is comprised of a single quantum well with ten parallel conducting
two-dimensional subbands. This provides new insight into the electronic
structure of conducting oxide interfaces and represents an important step
towards designing and understanding advanced oxide devices
Engineering Hybrid Epitaxial InAsSb/Al Nanowire Materials for Stronger Topological Protection
The combination of strong spin-orbit coupling, large -factors, and the
coupling to a superconductor can be used to create a topologically protected
state in a semiconductor nanowire. Here we report on growth and
characterization of hybrid epitaxial InAsSb/Al nanowires, with varying
composition and crystal structure. We find the strongest spin-orbit interaction
at intermediate compositions in zincblende InAsSb nanowires,
exceeding that of both InAs and InSb materials, confirming recent theoretical
studies \cite{winkler2016topological}. We show that the epitaxial InAsSb/Al
interfaces allows for a hard induced superconducting gap and 2 transport in
Coulomb charging experiments, similar to experiments on InAs/Al and InSb/Al
materials, and find measurements consistent with topological phase transitions
at low magnetic fields due to large effective -factors. Finally we present a
method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit
even stronger spin-orbit coupling than the zincblende structure.Comment: 10 pages and 5 figure
- …