7 research outputs found

    Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis

    No full text
    To achieve an effective surface-enhanced Raman scattering (SERS) sensor with periodically distributed “hot spots” on wafer-scale substrates, we propose a hybrid approach combining physical nano-imprint lithography and a chemical deposition method to form a silver microbead array. Nano-imprint lithography (NIL) can lead to mass-production and high throughput, but is not appropriate for generating strong “hot-spots.” However, when we apply electrochemical deposition to an NIL substrate and the reaction time was increased to 45 s, periodical “hot-spots” between the microbeads were generated on the substrates. It contributed to increasing the enhancement factor (EF) and lowering the detection limit of the substrates to 4.40 × 106 and 1.0 × 10−11 M, respectively. In addition, this synthetic method exhibited good substrate-to-substrate reproducibility (RSD < 9.4%). Our research suggests a new opportunity for expanding the SERS application

    System for Fabrication of Large-Area Roll Molds by Step-and-Repeat Liquid Transfer Imprint Lithography

    No full text
    The effective production of nanopatterned films generally requires a nanopatterned roll mold with a large area. We report on a novel system to fabricate large-area roll molds by recombination of smaller patterned areas in a step-and-repeat imprint lithography process. The process is accomplished in a method similar to liquid transfer imprint lithography (LTIL). The stamp roll with a smaller area takes up the liquid resist by splitting from a donor substrate or a donor roll. The resist is then transferred from a stamp roll to an acceptor roll and stitched together in a longitudinal and, if necessary, in a circumferential direction. During transfer, the nanostructured resist is UV-exposed and crosslinked directly on the acceptor roll. The acceptor roll with the stitched and recombined stamp patterns is ready to be used as a large-area roll mold for roll-based imprinting. A system for this purpose was designed, and its operation was demonstrated taking the example of an acceptor roll of 1 m length and 250 mm diameter, which was covered by 56 patterned areas. Such a system represents an elegant and efficient tool to recombine small patterned areas directly on a large roll mold and opens the way for large-area roll-based processing

    Hierarchically Porous, Laser-Pyrolyzed Carbon Electrode from Black Photoresist for On-Chip Microsupercapacitors

    No full text
    We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO2) laser to simultaneously carbonize and pattern a spin-coated black SU-8 film. Due to the high absorption of carbon blacks in black SU-8, the laser-irradiated SU-8 surface was directly exfoliated and carbonized by a fast photo-thermal reaction. Facile laser pyrolysis of black SU-8 provides a hierarchically macroporous, graphitic carbon structure with fewer defects (ID/IG = 0.19). The experimental conditions of CO2 direct laser writing were optimized to fabricate high-quality LPCs for MSC electrodes with low sheet resistance and good porosity. A typical MSC based on an LPC electrode showed a large areal capacitance of 1.26 mF cm−2 at a scan rate of 5 mV/s, outperforming most MSCs based on thermally pyrolyzed carbon. In addition, the results revealed that the high-resolution electrode pattern in the same footprint as that of the LPC-MSCs significantly affected the rate performance of the MSCs. Consequently, the proposed laser pyrolysis technique using black SU-8 provided simple and facile fabrication of porous, graphitic carbon electrodes for high-performance on-chip MSCs without high-temperature thermal pyrolysis

    Hierarchically Porous, Laser-Pyrolyzed Carbon Electrode from Black Photoresist for On-Chip Microsupercapacitors

    No full text
    We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO2) laser to simultaneously carbonize and pattern a spin-coated black SU-8 film. Due to the high absorption of carbon blacks in black SU-8, the laser-irradiated SU-8 surface was directly exfoliated and carbonized by a fast photo-thermal reaction. Facile laser pyrolysis of black SU-8 provides a hierarchically macroporous, graphitic carbon structure with fewer defects (ID/IG = 0.19). The experimental conditions of CO2 direct laser writing were optimized to fabricate high-quality LPCs for MSC electrodes with low sheet resistance and good porosity. A typical MSC based on an LPC electrode showed a large areal capacitance of 1.26 mF cm−2 at a scan rate of 5 mV/s, outperforming most MSCs based on thermally pyrolyzed carbon. In addition, the results revealed that the high-resolution electrode pattern in the same footprint as that of the LPC-MSCs significantly affected the rate performance of the MSCs. Consequently, the proposed laser pyrolysis technique using black SU-8 provided simple and facile fabrication of porous, graphitic carbon electrodes for high-performance on-chip MSCs without high-temperature thermal pyrolysis

    Vertical Alignments of Graphene Sheets Spatially and Densely Piled for Fast Ion Diffusion in Compact Supercapacitors

    No full text
    Supercapacitors with porous carbon structures have high energy storage capacity. However, the porous nature of the carbon electrode, composed mainly of carbon nanotubes (CNTs) and graphene oxide (GO) derivatives, negatively impacts the volumetric electrochemical characteristics of the supercapacitors because of poor packing density (<0.5 g cm<sup>–3</sup>). Herein, we report a simple method to fabricate highly dense and vertically aligned reduced graphene oxide (VArGO) electrodes involving simple hand-rolling and cutting processes. Because of their vertically aligned and opened-edge graphene structure, VArGO electrodes displayed high packing density and highly efficient volumetric and areal electrochemical characteristics, very fast electrolyte ion diffusion with rectangular CV curves even at a high scan rate (20 V/s), and the highest volumetric capacitance among known rGO electrodes. Surprisingly, even when the film thickness of the VArGO electrode was increased, its volumetric and areal capacitances were maintained
    corecore